(1990年)设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明在(a,b)内至少存在一点手,使得f’(ξ)>0.

admin2019-07-23  28

问题 (1990年)设不恒为常数的函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b).证明在(a,b)内至少存在一点手,使得f’(ξ)>0.

选项

答案证 因为f(a)=f(b)且f(x)在[a,b]上不恒为常数,则[*]c∈(a.b),使f(c)≠f(a). 若f(c’)>f(a),在[a,c]上应用拉格朗日中值定理,则[*]ξ∈(a,c),使[*] 若f’(c)
解析
转载请注明原文地址:https://kaotiyun.com/show/1wc4777K
0

最新回复(0)