首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
admin
2018-03-11
74
问题
(2014年)设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上( )
选项
A、当f′(x)≥0时,f(x)≥g(x)
B、当f′(x)≥0时,f(x)≤g(x)
C、当f"(x)≥0时,f(x)≥g(x)
D、当f"(x)≥0时,f(x)≤g(x)
答案
D
解析
方法一:首先将函数变形为
g(x)=f(1)一f(0)]x+f(0),
易知直线g(x)过曲线f(x)上的两个点(0,f(0)),(1,f(1)),则直线g(x)是曲线f(x)上的一条割线,当f"(x)≥0时,曲线f(x)为凹函数,连接曲线上任意两点的直线在曲线的上方,故g(x)≥f(x),故选D。
方法二:令F(x)=g(x)一f(x)=f(0)(1一x)+f(1)x一f(x),则F(0)=F(1)=0,且
F′(x)=一f(0)+f(1)一f′(x),F"(x)=一f"(x)。
若f"(x)≥0,则F"(x)≤0,曲线F(x)在[0,1]上是向上凸的。又F(0)=F(1)=0,所以当x∈[0,1]时,F(x)≥0,从而g(x)≥f(x),故选D。
转载请注明原文地址:https://kaotiyun.com/show/5vr4777K
0
考研数学一
相关试题推荐
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
A是n阶矩阵,则A相似于对角阵的充分必要条件是()
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(1)存在ξ∈(0,1),使得f(ξ)=1一ξ;(2)存在两个不同的点η,ζ∈(0,1),使得f’(n)f’(ξ)=1.
求下列极限.
设二元函数f(x,y)在单位圆区域x2+y2≤1上有连续的偏导数,且在单位圆的边界曲线上取值为零,f(0,0)=1.求极限,其中区域。为圆环域ε2≤x2+y2≤1.
(1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是()
(2003年)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界.试证:
(1998年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x1+y2)λi一x2(x1+y2!)λj为某二元函数u(x,y)的梯度,求u(x,y).
[2016年]设有界区域Ω由平面2x+y+2z=2与三个坐标平面围成,∑为Ω整个表面的外侧,计算曲面积分I=(x2+1)dydz—2ydzdx+3zdxdy.
随机试题
引起血糖升高的激素有
Astherewasapowercutinthehospital,thesurgeonhadto______theoperation.
“三个代表”重要思想形成的历史依据是()
A、紫苏子B、吴茱萸C、批杷叶D、延胡索E、何首乌处方直接写药名,需调配醋炙品的是
某男,16岁,患有弥漫性单纯性甲状腺肿,甲状腺肿大较明显,其主要治疗措施应为()。
下列各选项中,属于土地权属争议案件管辖原则规定的是()。
当关键线路的某工程项目施工进度被拖延时,以下措施合理的是()。
在证券公司自营业务决策中,应力求避免( )。
委托代理一般建立在特定的基础法律关系之上,其中多数是( )。
关于劳动力跨产业流动的说法,错误的是()。
最新回复
(
0
)