首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
admin
2018-11-11
48
问题
(1)设
问k满足什么条件时,kE+A是正定矩阵;
(2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
选项
答案
(1)因A=A
T
,(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵. 方法一 由[*] 知A有特征值λ
1
=0,λ
2
=λ
3
=3,则kE+A有特征值k,k+3,k+3,k+A正定[*]k>0. 方法二 [*] 综上,k>0. (2) 因A=A
T
,又(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵.设A有特征值λ
1
,λ
2
,…,λ
n
,且λ
1
≤λ
2
≤…≤λ
n
,则kE+A有特征值k+λ
1
,…,k+λ
n
,且k+λ
1
≤k+λ
2
≤…≤k+λ
n
. [*]存在大于零的实数k,使得kE+A的特征值全部大于零,kE+A正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJj4777K
0
考研数学二
相关试题推荐
当x→0时3x一4sinx+sinxcosx与xn为同阶无穷小量,试求n.
曲线点处的法线方程.
设3阶方阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2,试证若α1+α2+α3=β,求Ax=β的通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵.验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为()
设函数f(x)=如果f"(0)存在,求常数a,b.
设已知线性方程组Ax=b,存在两个不同的解.求方程组Ax=b的通解.
已知函数f(u,v)具有连续的二阶偏导数f(1,1)=2是f(u,v)的极值,已知z=f(x+y)f(x,y)].求
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是().
随机试题
在Windows中要播放CD唱盘,可用________工具。
枕左前位分娩时,与胎儿双肩径进入骨盆入口的同时,胎头的动作是
编制频数表时,组距常为
承担过多的信用风险会减少流动性风险。()
对顾客满意程度的定量化描述称为()。
2014年3月至5月,中央巡视组对北京、天津、辽宁、福建、山东、河南、海南、甘肃、宁夏、新疆、新疆生产建设兵团开展了常规巡视,对科技部、中粮集团、复旦大学开展了专项巡视。截至2014年7月14日下午,上述14个巡视点的“问题清单”均得以披露。观察
自我服务偏见又称白利性偏差,指人们常常从好的方面来看待自己,当取得一些成功时,常常容易归因于自己,而做了错事之后,怨天尤人,把它归因于外在因素,即把功劳归于自己,把错误推给人家。它是一种主观主义的表现,也是一种归因偏见。根据上述定义,下列选项中不属于自我服
在考生文件夹下完成如下综合应用:(1)建立数据库“订单管理”。(2)将表order、goods和orderitem添加到“订单管理”数据库。(3)在“订单管理”数据库中创建视图orderview,该视图包含信息:客户名、订单号
21.Manybreakfastcerealsarefortifiedwithvitaminsupplements.Someofthesecerealsprovide100percentoftherecommended
Thearrestofamanforallegedlypostingapictureofaburningpoppy(Peoplewearpoppytomemorizethosewhodiedinthetwow
最新回复
(
0
)