首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
admin
2018-11-11
74
问题
(1)设
问k满足什么条件时,kE+A是正定矩阵;
(2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
选项
答案
(1)因A=A
T
,(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵. 方法一 由[*] 知A有特征值λ
1
=0,λ
2
=λ
3
=3,则kE+A有特征值k,k+3,k+3,k+A正定[*]k>0. 方法二 [*] 综上,k>0. (2) 因A=A
T
,又(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵.设A有特征值λ
1
,λ
2
,…,λ
n
,且λ
1
≤λ
2
≤…≤λ
n
,则kE+A有特征值k+λ
1
,…,k+λ
n
,且k+λ
1
≤k+λ
2
≤…≤k+λ
n
. [*]存在大于零的实数k,使得kE+A的特征值全部大于零,kE+A正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJj4777K
0
考研数学二
相关试题推荐
设
设y=f(x)在(-1,1)内具有二阶连续导数,且f"(x)≠0,试证:(1)对(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θ(x)x)成立;(2)
求曲线点处的法线方程.
设方阵A满足条件ATA=E,其中AT是A的转置矩阵,E为单位阵.试证明A的实特征向量所对应的特征值的绝对值等于1.
设三阶矩阵A的特征值为λ1=1,λ2=2,λ3=3,对应的特征向量依次为求Anβ(n为自然数).
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值.若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.求矩阵A.
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
计算二重积分其中D由曲线与直线及围成.
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是().
(1998年)求函数f(χ)=在区间(0,2π)内的间断点,并判断其类型.
随机试题
病人意识丧失,无言语应答,对压眶刺激出现痛苦表情,腱反射存在,目前患者处于的状态是
依他尼酸的化学结构属于
甲诉乙民间借贷纠纷,二审法院终审判决乙返还甲借款本金、利息共计50万元。判决生效后,乙拒不履行义务,甲向一审法院申请强制执行。由于乙银行存款余额不足,执行人员对乙占有的一辆奔驰汽车采取了执行措施。在拍卖该汽车之前,公民丙向人民法院提出,该汽车的所有人是丙,
根据价、量的历史资料,通过建立一个数学模型,给出数学上的计算公式,得到一个体现证券市场的某个方面内在实质的指标值的技术分析方法的类别是( )。
提交中国证监会的法律意见书和律师工作报告应是经()名以上具有执行证券期货相关业务资格的经办律师和其所在律师事务所的负责人签名。
净资产是借款人全部资产减去全部负债的净额,下列选项中,不属于净资产的是()。
判断各方面工作的是非得失,归根到底,是要以()为标准。
杜甫诗云“江碧鸟愈白,山青花欲燃”,下列与该诗句体现的哲学道理相同的是()。
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
Whichofthefollowingwordscontainsaninflectionalmorpheme?
最新回复
(
0
)