首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
(1)设问k满足什么条件时,kE+A是正定矩阵; (2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
admin
2018-11-11
89
问题
(1)设
问k满足什么条件时,kE+A是正定矩阵;
(2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
选项
答案
(1)因A=A
T
,(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵. 方法一 由[*] 知A有特征值λ
1
=0,λ
2
=λ
3
=3,则kE+A有特征值k,k+3,k+3,k+A正定[*]k>0. 方法二 [*] 综上,k>0. (2) 因A=A
T
,又(kE+A)
T
=kE
T
+A
T
=kE+A,故kE+A是实对称矩阵.设A有特征值λ
1
,λ
2
,…,λ
n
,且λ
1
≤λ
2
≤…≤λ
n
,则kE+A有特征值k+λ
1
,…,k+λ
n
,且k+λ
1
≤k+λ
2
≤…≤k+λ
n
. [*]存在大于零的实数k,使得kE+A的特征值全部大于零,kE+A正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/gJj4777K
0
考研数学二
相关试题推荐
设4阶行列式的第2列元素依次为2,m,k,3,第2列元素的余子式依次为1,一1,1,一1,第4列元素的代数余子式依次为3,1,4,2.且行列式的值为1,求m,k.
行列式
设
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=在(一∞,0)和(0,+∞)都是单调增加的.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求矩阵A的特征值;
求函数f(x,y)=x2+2y2在约束条件x2+y2=1下的最大值和最小值.
设二次型x12+x22+x32一4x1x2—4x1x3+2ax2x3经正交变换化为3y12+3y22+6y32,求a,b的值及所用正交变换.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}.
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明:当x≥0时,成立不等式e-x≤f(x)≤1。
随机试题
假设“应付账款”账户期初贷方余额为8000元,本期借方发生额14000元,贷方发生额12000元,则该账户的期末余额为
来源于成骨细胞的原发性肿瘤有
中药鉴定最简单、常用的方法是
A、FD-MSB、EI-MSC、FAB-MSD、LSI-MSE、ESI-MS快原子轰击质谱为
下列不属于煤气安全检测方法的是()。
对焊缝内部线状缺陷的检测,下列检测方法中( )是最优选择。
流浪未成年人合法权益保护涉及多个部门。根据《关于加强流浪未成年人工作的意见》,()是流浪未成年人工作的政府职能部门。
求下列二重积分的累次积分
假设事件A和B满足P(B∣A)=1,则()
A、Heneedstobuyanewsweater.B、Hehasgottosaveonfuelbills.C、Thefuelpricehasskyrocketed.D、Theheatingsystemdoes
最新回复
(
0
)