首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶正定矩阵,k>0,证明kA,Ak,A-1,A*,A+B是正定阵.
设A,B为n阶正定矩阵,k>0,证明kA,Ak,A-1,A*,A+B是正定阵.
admin
2020-09-25
79
问题
设A,B为n阶正定矩阵,k>0,证明kA,A
k
,A
-1
,A*,A+B是正定阵.
选项
答案
设A,B的特征值分别为λ
1
,λ
2
,…,λ
n
,μ
1
,μ
2
,…,μ
n
. 因为A,B为正定矩阵,所以λ
i
,μ
j
>0(i=1,2,…,n;j=1,2,…,n).由特征值性质得: kA的特征值为kλ
1
,kλ
2
,…,kλ
n
;A
k
的特征值为λ
1
k
,λ
2
k
,…,λ
n
k
;A
-1
的特征值为[*];A*的特征值为[*] 又因为k>0可知kA,A
k
,A
-1
,A*的特征值均全为正,所以kA,A
-1
,A*,A
k
均为正定阵. 又由A,B为正定矩阵知,对于任一n维非零向量x,均有x
T
Ax>0,x
T
Bx>0,所以x
T
(A+B)x>0,所以A+B也是正定阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/gPx4777K
0
考研数学三
相关试题推荐
设4阶矩阵A与B相似,矩阵A的特征值为则行列式|B-1一E|=________。
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
(2002年)(I)验证函数y(x)=.(一∞<x<+∞)满足微分方程y"+y’+y=ex:(Ⅱ)利用(I)的结果求幂级数y(x)=的和函数。
[2003年]设a>0,而D表示全平面,则I==_________.
线性方程组的通解可以表不为
设(X1,X2,…,Xn)(n≥2)为标准正态总体X的简单随机样本,则().
设则fn(x)=___________.
随机试题
前列腺肉瘤很少见,起源于生肾索的中胚层组织,包括中肾管和中肾旁管的终末部分,是一种极度恶性的肿瘤。前列腺肉瘤的病理变化正确的是:
国防科学技术研究的重要项目、成果属于()。
患者,男性,40岁,连日来在高温下工作。今日下午感头痛头晕,继而体温升高达40℃,出现颜面潮红,皮肤干燥无汗,神志模糊,急诊入院。给患者采取的护理措施中,不妥的是
目前,我国零数委托适用于()。
优先股股息在当年未足额分派时,能在以后年度补发的优先股,称为()
背景说明:你是宏远公司行政秘书高叶,下面是行政经理苏明需要你完成的工作几项任务。
教师因对学生的期待和热望而表现出更多的注意、关心和亲近,从而对学生的学习成绩产生极大影响,这是()。
未成年犯禁闭期间,每天放风两次,每次不少于()。
纯收入
FiveGoldenRulesforGivingAcademicPresentationsAcademicpresentationsaredifferentfromtheclassroompresentationsthats
最新回复
(
0
)