首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1) T十k1 (1,0,2,1) T+k2 (2,1,1,—1) T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1) T十k1 (1,0,2,1) T+k2 (2,1,1,—1) T. 令C=(α1,α2,α3,α4,b),求Cx=b的通解.
admin
2019-08-26
142
问题
已知A=(α
1
,α
2
,α
3
,α
4
),非齐次线性方程组Ax=b的通解为(1,1,1,1)
T
十k
1
(1,0,2,1)
T
+k
2
(2,1,1,—1)
T
.
令C=(α
1
,α
2
,α
3
,α
4
,b),求Cx=b的通解.
选项
答案
与第一题类似,先求Cx=0的基础解系. 由于C即为线性方程组Ax=b的增广矩阵,故R(C)=R(A)=2,可知Cx=0的基础解系中含有5—2=3个线性无关的解向量,为此,需要找出Cx=0的三个线性无关的解. 由于(1,0,2,1)
T
,(2,1,1,—1)
T
均为Ax=0的解,可知(1,0,2,1,0)
T
,(2,1,l—l,0)
T
均为Cx=0的解.而(1,1,l,1,1)
T
为Ax=b的解,可知ɑ
1
+ɑ
2
+ɑ
3
+ɑ
4
=b,也即ɑ
1
+ɑ
2
+ɑ
3
+ɑ
4
—b=0,故(1,1,1,1,—1)
T
也为Cx=0的解. 这样,我们就找到了Cx=0的三个解:(1,0,2,l,0)
T
,(2,1,1,—1,0)
T
,(1,1,1,l,—1)
T
,容易验证它们是线性无关的,故它们即为Ck=0的基础解系. 最后,易知(0,0,0,0,1)
T
为Cx=b的解,故Cx=b的通解为 (0,0,0,0,1)
T
十k
1
(1,0,2,l,0)
T
+ k
2
(2,l,l,—1,0)
T
+ k
3
(1,l,1,1,—1)
T
,ki∈R,i=l,2,3.
解析
【思路探索】对于抽象型线性方程组,通常利用解的结构求解.
转载请注明原文地址:https://kaotiyun.com/show/gSJ4777K
0
考研数学三
相关试题推荐
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
A,B,C三个随机事件必相互独立,如果它们满足条件
设随机变量X和Y的联合密度为求条件概率P{Y>1|X<0.5}.
求幂级数(2n+1)x2n+2的收敛域,并求其和函数.
幂级数102n(2x一3)2n—1的收敛域为___________.
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电.以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于
(2008年)设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有2阶导数,且φ’≠一1.(Ⅰ)求dz;(Ⅱ)记
(2018年)设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求.
若二次型f(x1,x2,x3)=2x12+x22+x32+2x1x2+tx2x3是正定的,则t的取值范围是_______.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:矩阵A的特征值和特征向量.
随机试题
碘量法测定注射用苄星青霉素含量溴酸钾法测定异烟肼的含量
下列有“东方之珠”“美食天堂”和“购物天堂”等美誉的是()。
请问以下四个学校哪个学校女生人数最多?()
设,则f(x)的间断点为x=_________.
以下叙述中错误的是()。
Between1852,when【C1】______wasfirstestablishedthatMountEverestwasthehighestmountainonearth,and1953,whenEdmundHi
ENJOYYOURFAVOURITESINSTARCINEMASeptemberFri-SunVoldemort:14:00;16:00LordoftheRings(II)TheTwoTowe
Readthetextbelowabouttipsonbusinessnegotiation.Inmostofthelines(41-52)thereisoneextraword.Iteitherisgra
74.Thecinemawasindarknesswhenwewentinanditwasnoteasymattermakingourwaytoourseats.Theoldmanwhohadcome
Scientistsfindthathard-workingpeoplelivemuchlongerthanaveragemenandwomen.Careerwomenarehealthierthanhousewives
最新回复
(
0
)