首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有( ).
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有( ).
admin
2017-12-31
73
问题
设α
1
,α
2
,α
3
线性无关,β
1
可由α
1
,α
2
,α
3
线性表示,β
2
不可由α
1
,α
2
,α
3
线性表示,对任意的常数k有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
因为β
1
可由α
1
,α
2
,α
3
线性表示,β
2
不可由α
1
,α
2
,α
3
线性表示,所以kβ
1
+β
2
一定不可以由向量组α
1
,α
2
,α
2
线性表示,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选(A).
转载请注明原文地址:https://kaotiyun.com/show/gTX4777K
0
考研数学三
相关试题推荐
已知,则r(A—E)+r(2E+A)=________.
求下列积分:
设函数f(x)在[0,1]上二阶可导,且f(0)=f’(0)=f’(1)=0,f(1)=1.求证:存在ξ∈(0,1),使|f"(ξ)|≥4.
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解。
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是
设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,F’(x)与xk是同阶无穷小,则k等于
如图由y=0,x=8,y=x2围成一曲边三角形OAB,在曲边上求一点,使得过此点所作y=x2的切线与OA、AB所围成的三角形面积为最大.
向平面区域D:x≥0,0≤y≤4一x2内等可能地随机地投掷一点.求(1)该点到y轴距离的概率密度;(2)过该点所作y轴的平行线与x轴、y轴及曲线y=4一x2所围成的曲边梯形面积的数学期望与方差.
设函数f(x)在x=4处连续,且则曲线y=f(x)在点(4,f(4))处的切线方程是_______。
随机试题
行为
已知某厂生产x件产品的成本C=25000+2x+x2(单位:元).试问:要使平均成本最小,应生产多少件产品?
有关门窗构造做法,下列叙述何者有误?
国家根据建设项目对环境的影响程度,对建设项目的环境影响实行分类管理,应当编制环境影响报告书的是()。
所谓套利组合是指满足()条件的证券组合。
王老师穿了一套新衣服,课前一进班级,有几个淘气的男同学就凑在一起,用调侃的语调大声喊道:“老师,我爱你。"下列处理方式,最恰当的一项是()。
下列属于古代东西方的教育的共同特征的是()
“凡事预则立,不预则废”,在哲学上反映的是()
设随机变量X1,X2,…,X100独立同分布,且EXi=0,DXi=0,i=,2,…,100,令=_____
A、Thewomancan’tgetcashbeforetheproceedsarecollected.B、Thereissomethingwrongwiththeproceeds.C、Thewomanwillbe
最新回复
(
0
)