首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则 f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则 f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
admin
2018-03-30
57
问题
(Ⅰ)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则
f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y,
(Ⅲ)举例说明(Ⅱ)的逆定理不成立.
选项
答案
(Ⅰ)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,(x
0
+△x,y
0
+△y)∈U.增量 △z=f(x
0
+△x,y
0
+△y)一f(x
0
,y
0
)[*]A△x+B△y+ο(ρ), (*) 其中A,B与△x和△y都无关,ρ=[*]=0,则称f(x,y)在点(x
0
,y
0
)处可微,并称 [*] 为z=f(x,y)在点(x
0
,y
0
)处的微分. (Ⅱ)[证] 设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] 令△x→0,有[*]=B.证明了f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在,并且 [*]=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y. (Ⅲ)当f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在时,z=f(x,y)在点(x
0
,y
0
)处未必可微.反例: [*] 同理 f’
y
(0,0)=0. 两个偏导数存在.以下用反证法证出f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+ο(ρ), [*] 但此式是不成立的.例如取△y=k△x, [*] 极限值随k的变化而变化,(**)式不成立,所以f(x,y)在点(0,0)处不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/LwX4777K
0
考研数学三
相关试题推荐
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数
设B是元素全都为1的,n阶方阵(n>1).证明:
设实对称矩阵A满足A2=O,证明:A=O.
已知试确定常数a,b,使得当x→0时,f(x)~axb.
曲线y=x+sin2x在点处的切线方程是___________.
(1)验证函数满足微分方程y’’+y’+y=ex(2)利用(1)的结果求幂级数的和函数.
设矩阵A=I一aaT,其中I是n阶单位矩阵.a是n维非零列向量,证明:A2=A的充要条件是aTa=1;
设随机变量X的分布函数为F(x)=0.2F1(x)+0.8F1(2x),其中F2(y)是服从参数为().
设正态总体X~N(μ,σ2),X1,X2,…,Xn为其简单随机样本,样本均值为X,若P{|X-μ|<a)=P{|-μ|<b},则的值()
函数f(x)=的可去间断点的个数为()
随机试题
在中医的常用治法中,不属于和法的是()。
简述MIGA运作的主要条件。
提出"治外必本诸内"的原则是:创立了以阴阳为主的辨证论治法则的是:
我国卫生部规定,一名供精者的精子最多只能提供给
A、延髓B、室旁核C、杏仁体D、黑质E、蓝斑应激时,下丘脑—垂体—肾上腺皮质激素系统的中枢位点位于
A、水钠潴留B、抑制蛋白质合成C、促进胃酸分泌D、抑制机体防御功能E、提高中枢神经系统的兴奋性糖皮质激素禁用于创伤或手术恢复期是因为
以下关于银行资本说法正确的是()。
下列各项中,应记入“其他业务成本”科目的有()。
Mostofusareacutelyawareofhowmuchmobiledataweconsumeonourphonesandtablets.That’sbecauseAmericansarelargely
A、Haveone’shearttransplanted.B、Putmenontothemoonagain.C、Advancethetooth-fillingtechnique.D、Haveone’steethtransp
最新回复
(
0
)