首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则 f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
(Ⅰ)叙述二元函数z=f(x,y)在点(x0,y0)处可微及微分的定义; (Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x0,y0)处可微,则 f’x(x0,y0)与f’y(x0,y0)都存在,且=f’x(x0,y0)△x+f’y(x0,y0)
admin
2018-03-30
94
问题
(Ⅰ)叙述二元函数z=f(x,y)在点(x
0
,y
0
)处可微及微分
的定义;
(Ⅱ)证明下述可微的必要条件定理:设z=f(x,y)在点(x
0
,y
0
)处可微,则
f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)都存在,且
=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y,
(Ⅲ)举例说明(Ⅱ)的逆定理不成立.
选项
答案
(Ⅰ)定义:设z=f(x,y)在点(x
0
,y
0
)的某邻域U内有定义,(x
0
+△x,y
0
+△y)∈U.增量 △z=f(x
0
+△x,y
0
+△y)一f(x
0
,y
0
)[*]A△x+B△y+ο(ρ), (*) 其中A,B与△x和△y都无关,ρ=[*]=0,则称f(x,y)在点(x
0
,y
0
)处可微,并称 [*] 为z=f(x,y)在点(x
0
,y
0
)处的微分. (Ⅱ)[证] 设z=f(x,y)在点(x
0
,y
0
)处可微,则(*)式成立.令△y=0,于是 [*] 令△x→0,有[*]=B.证明了f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在,并且 [*]=f’
x
(x
0
,y
0
)△x+f’
y
(x
0
,y
0
)△y. (Ⅲ)当f’
x
(x
0
,y
0
)与f’
y
(x
0
,y
0
)存在时,z=f(x,y)在点(x
0
,y
0
)处未必可微.反例: [*] 同理 f’
y
(0,0)=0. 两个偏导数存在.以下用反证法证出f(x,y)在点(0,0)处不可微.若可微,则有 △f=f(△x,△y)一f(0,0)=0△x+0△y+ο(ρ), [*] 但此式是不成立的.例如取△y=k△x, [*] 极限值随k的变化而变化,(**)式不成立,所以f(x,y)在点(0,0)处不可微.
解析
转载请注明原文地址:https://kaotiyun.com/show/LwX4777K
0
考研数学三
相关试题推荐
已知求常数a的值.
求
已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,求矩阵X
设级数的和函数为S(x).求:(I)S(x)所满足的一阶微分方程;(Ⅱ)S(x)的表达式.
求幂级数的和函数f(x)及其极值.
设0<a<1,区域D由x轴,y轴,直线x+y=a及x+y=1所围成,且
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=(x0)一0.(x0)>0,则下列结论正确的是().
设二维随机变量(X,Y)~N(1,2;1,4;),且P{aX+bY≤1)=,则()
设随机变量X,Y相互独立,且又设向量组α1,α2,α3线性无关,求α1+α2,α2+Xα3,Yα1线性相关的概率.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
随机试题
消化性溃疡引起腹痛的机制是
胎黄的病因错误的是
A.CMB.VLDLC.LDLD.HDLE.清蛋白
有机磷酸酯类急性中毒表现为()
顾某乘坐某公司长途客车从山东前往河南,在途中其随身携带的手机被他人秘密窃取,等扒手下车后,其他乘客方告知顾某,顾某立即叫停车辆,下车追赶小偷。此时,车上的司售人员没有予以协助,最后让小偷逃之天天。顾某诉至法院,要求运输公司赔偿损失。对此,下列说法正确的是:
下列关于填写检验检疫证单的说法正确的是( )。
外商投资企业享受特定减免税优惠进口的机器设备自进口之日起超过5年的,可以向海关申请解除监管。()
下列歌剧角色中,属于女高音的角色是()。
劳动教养决定发生法律效力后,交付劳动教养场所执行应当在()。
党的十九大报告提出了新时代党的建设的总要求,其中,新时代党的建设的主线的是
最新回复
(
0
)