首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5-α4的秩为4.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α1,α2,α3,α5-α4的秩为4.
admin
2019-05-08
30
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4.证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
证一 转化为矩阵证明.设A=[α
1
,α
2
,α
3
,α
5
],B=[α
1
,α
2
,α
3
,α
5
一α
4
].注意α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,由命题2.3.1.1知,α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,则 [*] 因而矩阵B与A等价,故秩(B)=秩(A)=4,即α
1
,α
2
,α
3
,α
5
一α
4
线性无关. 证二 利用两向量组等价必等秩的结论证之.因 [*] 且|K|=1≠0,故α
1
,α
2
,α
3
,α
5
可由α
1
,α
2
,α
3
,α
5
—α
4
线性表出.显然α
1
,α
2
,α
3
,α
5
一α
4
可由α
1
,α
2
,α
3
,α
5
线性表出,因而这两个向量组等价.等价必等秩,故秩([α
1
,α
2
,α
3
,α
5
一α
4
])=4. 注:命题2.3.1.1 α
1
,α
2
,…,α
s
线性无关,而β,α
1
,α
2
,…,α
s
线性相关,则β可由α
1
,α
2
,…,α
s
线性表示,且表示法唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/oEJ4777K
0
考研数学三
相关试题推荐
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
已知总体X的数学期望E(X)=μ,方差D(X)=σ2,X1,X2,…,Xn是取自总体X容量为2n的简单随机样本,样本均值为,统计量,求E(Y)。
设随机变量X的概率密度为对X独立地重复观察4次,用Y表示观察值大于的次数,求Y2的数学期望。
设a0=1,a1=2,a2=,an+1=an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
随机变量(X,Y)的联合密度函数为f(x,y)=(1)求常数A;(2)求(X,Y)落在区域x2+y2≤内的概率.
高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足z=h(t)-,已知体积减少的速度与侧面积所成比例系数为0.9,问高度为130的雪堆全部融化需要多少时间(其中长度单位是cm,时间单位为h)?
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
(2001年)设随机变量X,Y的数学期望分别是-2和2,方差分别为1和4,而相关系数为-0.5。则根据切比雪夫不等式P{|X+Y|≥6}≤______。
随机试题
试述运输的功能与原理。
合成类固醇激素的前体物质是
重组体的筛选方法,不包括
A.生姜B.干姜C.白芷D.高良姜E.辛夷与附子都具有回阳功效的是()。
某女,36岁。双侧乳房出现肿块,月经前增大,乳房胀痛,肿块随喜怒消长,伴有胸闷胁胀,善郁易怒,失眠多梦,心烦口苦。舌苔薄黄,脉弦滑。中医诊断是()。
往来款项不包括()
已知:MT公司2014年年初所有者权益总额为1500万元,该年的资本保值增值率为125%。2016年年初负债总额为4000万元,所有者权益是负债的1.5倍,该年的资本积累率为150%,年末资产负债率为25%,负债的年均利率为10%,全年固定成本总额为975
某洗车店洗车分外部清洁和内部清洁,两道工序时间均不少于30分钟,而且同一辆车两道工序不能同时进行,洗车间同一时间只能容下2辆车。现有9辆车需要清洗,汽车进出洗车间的时间可忽略不计,则洗完9辆车至少需要的时间为()。
根据以下资料,回答下列问题。2017年全国举办马拉松赛事达1102场,其中,中国田径协会举办的A类赛事223场,B类赛事33场。2017年马拉松赛事的参与人次达到了498万人次,2016年、2015年马拉松赛事的参与人
若有以下程序#includemain(){chara[20],b[]="Theskyisblue.";inti;for(i=0;i<10;i++)scanf("%c",&a[i]);a[i]=’\0’;gets(b);printf("%s%s
最新回复
(
0
)