首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
admin
2019-05-11
64
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(1一,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
(Ⅲ)求A及(A一
E),其中E为三阶单位矩阵。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以[*],则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。因此对应λ=3的全部特征向量为kα,其中k为不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量。因此对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交。 取β
1
=α
1
一(一1,2,一1)
T
,由施密特正交法则 β
2
=α
2
一[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,由A是实对称矩阵必可相似对角化,得 Q
T
AQ=[*]。 (Ⅲ)由(Ⅱ)知Q
T
AQ=[*],所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JIJ4777K
0
考研数学三
相关试题推荐
设随机变量X和Y的相关系数为0.9,若Z=2X一1,则Y与Z的相关系数为________。
设事件A、B、C满足P(ABC)>0,则P(AB|C)=P(A|C)P(B|C)的充要条件是()
设随机变量U服从二项分布,随机变量求随机变量X—Y与X+Y的方差和X与Y的协方差。
设随机变量且P{|X|≠|Y|}=1。(Ⅰ)求X与Y的联合分布律,并讨论X与Y的独立性;(Ⅱ)令U=X+Y,V=X—Y,讨论U与Y的独立性。
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
假设二维随机变量(X1,X2)的协方差矩阵为∑=,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设a0=1,a1=2,a2=,an+1=an(n≥2).证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
随机试题
恩格斯曾经指出,道德“或者为统治阶级的统治和利益辩护,或者当被压迫阶级变得足够强大时,代表被压迫者对这个统治的反抗和他们的未来利益”。这主要说明的是()
德育过程的长期性
急性阑尾炎腹裂
脊髓丘脑束薄束、楔束
A、意外露髓B、充填体脱落C、继发龋D、乳牙内吸收E、充填体过高直接盖髓术的适应证是
【2007年第100题】关于钢结构梁柱板件宽厚比限值的规定,下列哪一种说法是不正确的?
某超市顾客甲与超市工作人员乙发生争执,并大打出手,乙说发现甲偷超市东西,甲否认。派出所民警赶到现场。为弄清该事件,派出所人员进行调查,下列调查行为对本案的解决,意义不大的是()。
“教育的目的在于使个人能够继续他们的教育,或者说,学习的目的和报酬,是继续不断的生长能力。”这所反映的教育目的论是
关于减刑和假释的程序性条件正确的说法有()。
软件(程序)调试的任务是
最新回复
(
0
)