首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
admin
2019-05-11
69
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(1一,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
(Ⅲ)求A及(A一
E),其中E为三阶单位矩阵。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以[*],则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。因此对应λ=3的全部特征向量为kα,其中k为不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量。因此对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交。 取β
1
=α
1
一(一1,2,一1)
T
,由施密特正交法则 β
2
=α
2
一[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,由A是实对称矩阵必可相似对角化,得 Q
T
AQ=[*]。 (Ⅲ)由(Ⅱ)知Q
T
AQ=[*],所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JIJ4777K
0
考研数学三
相关试题推荐
设随机变量X与Y相互独立,且X~B(5,0.8),Y~N(1,1),则根据切比雪夫不等式有P{0<x+y<10}≥________。
设随机变量X和Y的相关系数为0.9,若Z=2X一1,则Y与Z的相关系数为________。
设事件A、B、C满足P(ABC)>0,则P(AB|C)=P(A|C)P(B|C)的充要条件是()
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
假设X是在区间(0,1)内取值的连续型随机变量,而Y=1一X。已知P{X≤0.29}=0.75,则满足P{Y≤k}=0.25的常数k=________。
设二阶常系数线性微分方程y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机变量X的密度函数为f(x)=ke-|x|(-∞<x<+∞),则E(X2)=______.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
随机试题
简述微内核(客户/服务器)体系结构的特点。
在性成熟期,中医认为:乳头属
患者意识障碍,可唤醒,但不能准确辨别人物和地点。改种意识状态称为
甲为获取超额利润,在明知其所经销的电器产品不符合保障人身安全的国家标准的情况下.仍然大量进货销售,销售金额总计达到180万元。一企业因使用这种电器而导致短路,引起火灾,造成3人轻伤,部分厂房被烧毁,直接经济损失10万元。关于甲的行为定性,下列选项正确的是:
乙级监理单位不须满足( )的条件。
刑事诉讼审判人员应当自行回避的情形不包括()。(2014年)
根据外商投资企业和外国企业所得税法规定,外国投资者发生再投资行为时,必须自资金实际投入之日起()内,持有关证明材料,向税务机关申请办理再投资退税。
宋末以画墨兰著称,画兰而不画土的画家是()
张某出于报复动机将赵某打成重伤,发现赵某丧失知觉后,临时起意拿走了赵某的钱包,钱包里有1万元现金,张某将其占为己有。关于张某取财行为的定性,下列哪一选项是正确的?()
A、 B、 C、 D、 DAtravelerisstandingontheplatformwaitingforatrainandwatchinganothertrainacross
最新回复
(
0
)