首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(1一,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。 (Ⅰ)求A的特征值与特征向量; (Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A; (Ⅲ)求A及(A一E
admin
2019-05-11
63
问题
设三阶实对称矩阵A的各行元素之和均为3,向量α
1
=(1一,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解。
(Ⅰ)求A的特征值与特征向量;
(Ⅱ)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
(Ⅲ)求A及(A一
E),其中E为三阶单位矩阵。
选项
答案
(Ⅰ)因为矩阵A的各行元素之和均为3,所以[*],则由特征值和特征向量的定义知,λ=3是矩阵A的特征值,α=(1,1,1)
T
是对应的特征向量。因此对应λ=3的全部特征向量为kα,其中k为不为零的常数。 又由题设知Aα
1
=0,Aα
2
=0,即Aα
1
=0.α
1
,Aα
2
=0.α
2
,而且α
1
,α
2
线性无关,所以λ=0是矩阵A的二重特征值,α
1
,α
2
是其对应的特征向量。因此对应λ=0的全部特征向量为k
1
α
1
+k
2
α
2
,其中k
1
,k
2
为不全为零的常数。 (Ⅱ)因为A是实对称矩阵,所以α与α
1
,α
2
正交,所以只需将α
1
,α
2
正交。 取β
1
=α
1
一(一1,2,一1)
T
,由施密特正交法则 β
2
=α
2
一[*]。 再将α,β
1
,β
2
单位化,得 [*] 令Q=(η
1
,η
2
,η
3
),则Q
-1
=Q
T
,由A是实对称矩阵必可相似对角化,得 Q
T
AQ=[*]。 (Ⅲ)由(Ⅱ)知Q
T
AQ=[*],所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/JIJ4777K
0
考研数学三
相关试题推荐
(Ⅰ)设随机变量X服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{X≥s+t|X≥s}=P{X≥t}(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设随机变量U服从二项分布,随机变量求随机变量X—Y与X+Y的方差和X与Y的协方差。
设二维随机变量(X,Y)的联合概率密度为求:(Ⅰ)系数A;(Ⅱ)(X,Y)的联合分布函数;(Ⅲ)边缘概率密度;(Ⅳ)(X,Y)落在区域R:x>0,y>0,2x+3y<6内的概率。
已知随机变量X与Y均l服从0一1分布,且E(XY)=,则P{X+Y≤1}=()
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设函数y=y(x)满足△y=△x+ο(△x),且y(1)=1,则∫01y(x)dx=______.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
随机试题
在PowerPoint2003中,幻灯片放映时能够切换到下一张幻灯片的操作有________。
6岁儿童,B超发现甲状腺右侧1.2cm实性结节,无包膜,颈周未探及肿大淋巴结,治疗为
腹泻超过多长时间为慢性腹泻
脑血流和颅内压调节的特点不包括
根据《关于制止电解铝行业违规建设盲目投资的若干意见》,属于以下( )情况的矿点必须依法关闭。
民航规定,在飞机离站前24小时之前申请退票,所收取的手续费为票价的()。
19世纪70年代以后,王韬、薛福成、马建忠、郑观应等人不仅主张学习西方的科学技术,同时也要求吸纳西方的政治、经济学说。他们的共同特点是()
HowtoapproachReadingTestPartFive•ThispartoftheReadingTesttestsyourgrammar:•Readthewholetextquicklytofind
WhatistheproblemofEngland’semergencyhealthcareservices?
Corporationsasagroupofferavarietyofjobs.Mostlargecompaniessendpeopletocollegesto【B1】______graduatingstudentsw
最新回复
(
0
)