首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的密度函数为f(x;θ)=,-∞<x<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。 求θ的极大似然估计量,并问是否为θ的无偏估计?
设总体X的密度函数为f(x;θ)=,-∞<x<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。 求θ的极大似然估计量,并问是否为θ的无偏估计?
admin
2019-12-24
49
问题
设总体X的密度函数为f(x;θ)=
,-∞<x<+∞,其中θ(θ>0)是未知参数,(X
1
,X
2
,…,X
n
)为来自总体X的一个简单随机样本。
求θ的极大似然估计量
,并问
是否为θ的无偏估计?
选项
答案
设样本X
1
,X
2
,…,X
n
的取值为x
1
,x
2
,…,x
n
,则对应的似然函数为 L(x
1
,x
2
,…,x
n
;θ)=[*] 取对数得[*] 关于θ求导得[*] 令[*],得θ的极大似然估计量[*],因为 [*] 所以[*],即[*]是θ的无偏估计。
解析
转载请注明原文地址:https://kaotiyun.com/show/gmD4777K
0
考研数学三
相关试题推荐
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为λ的指数分布.(I)求第三辆车C在加油站等待加油时间T的概率密度;(Ⅱ)求
设随机变量X与Y相互独立,且X服从参数为p的几何分布,即P{X=m}=pqm-1,m=1,2,…,0<p<1,q=1—p,Y服从标准正态分布N(0,1).求:(I)U=X+Y的分布函数;(Ⅱ)V=XY的分布函数.
已知随机变量X与Y相互独立且都服从参数为的0-1分布,即P{X=0}=P{X=1}=.P{Y=0}=P{Y=1}=.定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立.
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0x<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(I)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
已知求作可逆矩阵P,使得(AP)TAP是对角矩阵.
设连续型随机变量X的分布函数为其中a>0,ψ(x),φ(x)分别是标准正态分布的分布函数与概率密度,令求Y的密度函数.
设随机变量X的分布函数为求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}以及概率密度f(x).
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
已知ξ1=(1,1,一1,一1)T和ξ2=(1,0,一1,0)T是线性方程组的解,η=(2,一2,1,1)T是它的导出组的解,求方程组的通解.
随机试题
下列哪种类型为不累及肺泡的肺气肿()
若蛔虫病患儿并发了不完全肠梗阻,其治疗措施不妥的是
肺癌伴有类癌综合征时不可能出现的症状是
政府公共投资类项目由行业工程咨询机构投标来承揽的咨询服务是()。
监理工程师在设备安装阶段应审核的工作有()。
下列选项中,属于附加刑的是()。
医院和疗养院的病房楼内相邻护理单元之间采用耐火极限不低于()h的防火隔墙分隔,隔墙上的门为乙级防火门,设置在走道上的防火门为常开防火门。
A公司从B汽车运输公司租入5辆载重汽车,双方签订的合同规定,5辆载重汽车的总价值为240万元,租期10个月,月租金为1.28万元。则A公司应缴印花税额()。
A、 B、 C、 D、 AB项中的E开口应朝向B;C项中的正面F应顺时针旋转180度;D项中的B所在面应为F,且F开口向下。因此本题选A。
通过对海豚间通信联系的深入研究,科学家发现,齐普夫定律和信息论中的熵值概念可以很好地为分析外星信号服务。在接收到地外任何可疑信号后,应该首先用齐普夫定律分析是否存在一定斜率直线特征,如果有某种特征,则证明其并非毫无意义的噪声。然后进行熵值分析,这样可以不必
最新回复
(
0
)