首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
admin
2018-11-20
29
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
(1)求A的特征值.
(2)当实数k满足什么条件时A+kE正定?
选项
答案
(1)因为A是实对称矩阵,所以A的特征值都是实数. 假设λ是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或一2.又因为r(A一0E)=r(A)=2,特征值0的重数为3一r(A—0E)=1,所以一2是A的二重特征值.A的特征值为0,一2,一2. (2)A+kE的特征值为k,k一2,k一2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/GfW4777K
0
考研数学三
相关试题推荐
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设X,Y为两个随机变量,P(X≤1,Y≤1)=,P(X≤1)=P(y≤1)=,则P{min(X,Y)≤1)=().
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β—αm线性无关.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.一次性抽取4个球;
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
质量为lg的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,),≤x≤y+1}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
随机试题
实体完整性规则要求关系中主键值不能为______。
下列案件中,由人民法院直接受理的案件是
维生素B1缺乏可引起
可解蛇毒治毒蛇咬伤的药物是
下列不属于金融资产管理公司金融类不良资产处置方式的是()。
某商贸企业2019年度资产总额4000万元,在册职工270人,自行核算实现利润总额140万元,后经聘请的会计师事务所审计,发现有关情况如下:(1)计入成本、费用中的实发工资540万元;发生的工会经费15万元、职工福利费82万元、职工教育经费28万元(已经
2008年末,全国共有艺术表演团体2575个,文化馆3171个,公共图书馆2825个,博物馆1798个,广播电台257座,电视台277座,广播电视台2069座,教育台45个,有线电视用户16342万户,有线数字电视用户4503万户。年末广播节目综合人口覆盖
在函数中,可以用auto、extern、register和static这四个关键字中的一个来说明变量的存储类型,如果不说明存储类型,则默认的存储类型是()。
Wewalkedsoquietlythatthenurseatthedeskdidn’tevenlifthereyesfromthebook.Mumpointedtoabigchairbythedoor
Wanthappier,better-adjustedkids?Paylessattentiontothem,so【C1】______afamilycoachDavidCode.Hesaysfamiliescentered
最新回复
(
0
)