首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2. (1)求A的特征值. (2)当实数k满足什么条件时A+kE正定?
admin
2018-11-20
44
问题
设A是3阶实对称矩阵,满足A
2
+2A=0,并且r(A)=2.
(1)求A的特征值.
(2)当实数k满足什么条件时A+kE正定?
选项
答案
(1)因为A是实对称矩阵,所以A的特征值都是实数. 假设λ是A的一个特征值,则λ
2
+2λ是A
2
+2A的特征值.而A
2
+2A=0,因此λ
2
+2λ=0,故λ=0或一2.又因为r(A一0E)=r(A)=2,特征值0的重数为3一r(A—0E)=1,所以一2是A的二重特征值.A的特征值为0,一2,一2. (2)A+kE的特征值为k,k一2,k一2.于是当k>2时,实对称矩阵A+kE的特征值全大于0,从而A+kE是正定矩阵.当k≤2时,A+kE的特征值不全大于0,此时A+kE不正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/GfW4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)的联合分布律为则在Y=1的条件下求随机变量X的条件概率分布.
随机变量(X,Y)的联合密度函数为f(x,y)=求(x,y)落在区域x2+y2≤内的概率.
设A,B,C,D都是n阶矩阵,r(C4+DB)=n.设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设连续型随机变量X的分布函数为F(x)=求常数A,B;
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E一ααT,B=E+ααT,且B为A的逆矩阵,则a=________.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设二次型f(x1,x2,x3)=x12+4x22+2x32+2tx1x2+2x1x3为正定二次型,求t的范围.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=0,求线性方程组Ax=0的通解。
随机试题
属于汗法的方剂是()(1999年第144题)
牙菌斑作为牙周炎始动因素的依据,除了
A.甲状腺B.松果体C.肾上腺D.垂体E.甲状旁腺共两对,呈黄豆大小球状的是
A、压榨法B、溶剂提取法C、水蒸气蒸馏法D、CO2超临界流体提取法E、盐析法从富含挥发油的新鲜植物药材中提取挥发油的常用方法是
下列哪些属于缓释-控释制剂
某企业因法人资格被依法终止,现委托税务事务所办理注销税务登记,则注册税务师应当向主管税务机关提供()等凭证资料后,方可依法办理注销税务登记。
为职工提供的非货币性福利,不属于应付职工薪酬核算范围。()
学习者用来调节自己的注意、记忆、思维等过程的技能就是()。
在社会主义初级阶段,非公有制经济是______。
设f(x)在(一∞,+∞)内是连续的偶函数,证明F(x)=∫0x(x一t)f(t)dt也是偶函数.
最新回复
(
0
)