首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,π]上连续,在(0,π)内可导,且 ∫0πf(x)cos xdx=∫0πf(x)sin xdx=0。 求证:存在ξ∈(0,π),使得f’(ξ)=0.
设f(x)在[0,π]上连续,在(0,π)内可导,且 ∫0πf(x)cos xdx=∫0πf(x)sin xdx=0。 求证:存在ξ∈(0,π),使得f’(ξ)=0.
admin
2020-03-16
34
问题
设f(x)在[0,π]上连续,在(0,π)内可导,且
∫
0
π
f(x)cos xdx=∫
0
π
f(x)sin xdx=0。
求证:存在ξ∈(0,π),使得f’(ξ)=0.
选项
答案
首先证明f(x)在(0,π)内必有零点. 因为在(0,π)内f(x)连续,且sin x>0,所以,若无零点,则恒有f(x)>0或f(x)<0,从而有∫
0
π
f(x)sin xdx>0或∫
0
π
f(x)sin xdx<0,与题设矛盾. 所以,f(x)在(0,π)内必有零点. 下面证明f(x)在(0,π)内零点不唯一,即至少有两个零点. 用反证法.假设f(x)在(0,π)内只有一个零点x
0
,则f(x)在(0,x
0
)和(x
0
,π)上取不同的符号(且不等于零),否则与∫
0
π
f(x)sin xdx=0矛盾.这样,函数sin(x一x
0
)f(x)在(0,x
0
)和(x
0
,π)上取相同的符号,即恒正或恒负. 那么有:∫
0
π
f(x)sin(x一x
0
)dx≠0.但是 ∫
0
π
f(x)sin(x一x
0
)dx=∫
0
π
f(x)(sin xcos x
0
—cos xsin x
0
)dx =cos x
0
∫
0
π
f(x)sin xdx—sin x
0
∫
0
π
f(x)cos xdx=0. 从而矛盾,所以f(x)在(0,π)内至少有两个零点.于是由罗尔定理即得存在ξ∈(0,π),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/go84777K
0
考研数学二
相关试题推荐
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=-f(ξ)cotξ.
设A为n阶方阵(n≥2),A*为A的伴随矩阵,证明:
设矩阵,矩阵B=(kE+A)2,其中k为实数,求对角矩阵A,使B与A相似.并求k为何值时,B为正定矩阵.
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
已知函数f(μ)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny—sinx),求。
求不定积分
设当0≤x≤1时,f(x)=xsinx,对于其他x,f(x)满足f(x)+k=2f(x+1),求常数k的值,使f(x)在x=0处连续.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重X(单位kg)是一个随机变量,它服从正态分布N(μ,σ2),当机器工作正常时,其均值为0.5kg,根据经验知标准差为0.015kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡萄糖
随机试题
按照传统分类,我国分为___大菜系。
RyanHickmanwasborninanAmericanfamily.Whenhewasthreeyearsold,RyanHickmanvisitedarecyclingcentreinCalifornia
十二指肠悬韧带()
FIDIC即国际咨询工程师联合会于( )年在欧洲成立。
企业对外提供的财务会计报告应当()。
会计凭证分为原始凭证和记账凭证的标准是()。
5Rs营销策略是由()提出的。
下列关于警告的说法,正确的是( )。
常见的电子邮件协议有以下几种:SMTP、[16]、IMAP。这几种协议都是由[17]协议簇定义的。[18]主要负责底层的邮件系统如何将邮件从一台机器传至另外一台机器;[19]是把邮件从电子邮箱中传输到本地计算机的协议:[
Itisanunderstoodfactthatwaterhelpsmobilizesolublenutrients,transportwastematerialsandregulatesbodytemperature.
最新回复
(
0
)