首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形. (3)求方程f(χ1,χ2,χ3)=0的
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ22+2χ32+2(1+a)χ1χ2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形. (3)求方程f(χ1,χ2,χ3)=0的
admin
2019-06-28
79
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
2
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(χ
1
,χ
2
,χ
3
)化为标准形.
(3)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(1)此二次型的矩阵为A=[*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. A=[*] (2)|λE-A|=[*]=λ(λ-2)
2
, 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: A-2E=[*] 得(A-2E)X=0的同解方程组χ
1
-χ
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
3
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 求0的一个单位特征向量:A=[*] 得AX=0的同解方程组[*] 得一个解η
1
=(1,-1,0)
T
,单位化得α
3
=[*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则Q
T
AQ=[*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=χ
1
2
+χ
2
2
+2χ
3
2
+2χ
1
χ
2
=(χ
1
+χ
2
)
2
+2χ
3
2
. 于是f(χ
1
,χ
2
,χ
3
)=0[*] 求得通解为:c[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/gpV4777K
0
考研数学二
相关试题推荐
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求a,b的值;
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
设方阵A1与B1合同,A2与B2合同,证明:合同。
将∫01dy∫0yf(x2+y2)dx化为极坐标下的二次积分为_________。
设f(x),g(x)是连续函数,F(x,y)=∫1xdμ∫0yμf(tμ)g()dt,则=_______。
设函数=_______
曲线y=的斜渐近线为_______.
一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0。假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?
[*]根据迫敛定理得[*]
随机试题
お小遣いをもらって子供達は________としていた。
安全事故按其发生的的原因和性质分类,有()。
已切割的牛角棒
下列项目中,属于增值税准予计算扣除进项税额的货物运费金额是()。
小腿动脉出血时可采用的止血方法是()。
在数据库技术中,未提交的随后又被撤销的数据称为()。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
HumanmaleslivingwiththeirmomsmaynotexpecttohavemuchluckhookingupthisValentine’sDay.【C1】______amongthenorther
层次模型只能表示1:M联系,对表示M:N联系则很困难,而且层次顺序严格,这是该模型的______。
使用VC6打开考生文件夹下的proj1工程目录内的proj1.dsw文件,其中在编辑窗口内显示的主程序文件中定义有Xabc类和主函数main。在程序文本中位于每行”//ERROR*********found*********下面的一行有错误,请加以更正。
最新回复
(
0
)