首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是( )
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是( )
admin
2018-02-07
58
问题
设三阶矩阵A的特征值是0,1,一1,则下列选项中不正确的是( )
选项
A、矩阵A—E是不可逆矩阵。
B、矩阵A+E和对角矩阵相似。
C、矩阵A属于1与一1的特征向量相互正交。
D、方程组Ax=0的基础解系由一个向量构成。
答案
C
解析
因为矩阵A的特征值是0,1,一1,所以矩阵A—E的特征值是一1,0,一2。由于λ=0是矩阵A—E的特征值,所以A—E不可逆。故选A。
因为矩阵A+E的特征值是1,2,0,矩阵A+E有三个不同的特征值,所以A+E可以相似对角化。(或由
而知A+E可相似对角化)。
由矩阵A有一个特征值等于0可知r(A)=2,所以齐次线性方程组Ax=0的基础解系由n—r(A)=3-2=1个解向量构成。
选项C的错误在于,若A是实对称矩阵,则不同特征值的特征向量相互正交,而一般n阶矩阵,不同特征值的特征向量仅仅线性无关并不一定正交。
转载请注明原文地址:https://kaotiyun.com/show/aHk4777K
0
考研数学二
相关试题推荐
指出以下方程各代表什么曲面:(1)z=4(x2+y2)(2)x2=3(x2+y2)(3)z=2y2(4)
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
设f(x)在[0,1]上连续,取正值且单调减少,证明
设,证明fˊ(x)在点x=0处连续.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
求函数的最大值和最小值。
比较的大小,说明理由。
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
随机试题
蛔虫病的主要并发症是_________、_________。
A.心包摩擦音B.舒张早期奔马律C.颈静脉怒张,奇脉,脉压减小D.心界向两侧扩大,心音遥远,Ewart征急性纤维蛋白性心包炎
全口义齿排牙前检查,哪一项标志与排牙无关
我国病毒性脑炎最常见的病原体是
农户饲养18月龄以下犊牛26头,冬季发病,体温40~42℃,持续4~7天,4头死亡,主要表现厌食,流鼻涕;鼻镜、口腔黏膜糜烂,舌面坏死,流涎;病初水样腹泻,后带黏液和血液。多数病犊出现蹄叶炎和趾间皮肤糜烂坏死,跛行。同场绵羊和山羊亦见相似的症状。剖检见食道
溶浸采矿法可用于开采()。
下列关于会计人员工作交接的表述中,错误的是()。
废除凌迟刑的是
Comparisonsweredrawnbetweenthedevelopmentoftelevisioninthe20thcenturyandthediffusionofprintinginthe15thand1
[A]Somearchaeologicalsiteshavealwaysbeeneasilyobservable—forexample,theParthenoninAthens,Greece,thepyramidsofG
最新回复
(
0
)