首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
设齐次线性方程组 其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
admin
2018-04-18
50
问题
设齐次线性方程组
其中a≠0,b≠0,n≥2。试讨论a,b为何值时方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
选项
答案
方程组的系数行列式 |A|=[*]=[a+(n一1)b](a—b)
n-1
。 ①当a≠b,且a≠(1一n)b时,方程组仅有零解。 ②当a=b时,对系数矩阵A作初等变换,有 [*] 原方程组的同解方程组为x
1
,x
2
,…,x
n
=0,其基础解系为: α
1
=(一1,1,0,…,0)
T
,α
2
=(一1,0,1,…,0)
T
,…,α
n-1
=(一1,0,0,…,1)
T
。 方程组的全部解是: x=c
1
α
1
+c
2
α
2
+…+c
n-1
α
n-1
(c
1
,c
2
,…,c
n-1
为任意常数)。 ③当a=(1一n)b时,对系数矩阵A作初等变换,有 [*] 原方程组的同解方程组为 [*] 其基础解系为β=(1,1,…,1)
T
,方程组的全部解是x=cβ(c为任意常数)。
解析
转载请注明原文地址:https://kaotiyun.com/show/gpX4777K
0
考研数学三
相关试题推荐
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α.①求xTAx的表达式.②求作正交变换x=Qy,把xTAx化为标准二次型.
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T.①若α1,α2,α3线性相关,求α.②当a=3时,求与α1,α2,α3都正交的非零向量α4.③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设f(x)是(一∞,+∞)上连续的偶函数,且|f(x)|≤M当x∈(一∞,+∞)时成立,则F(x)=∫0xte一t2f(t)dt是(一∞,+∞)上的
设函数f(x)=则f(10)(1)=________.
若f(一1,0)为函数f(x,y)=e一x(ax+b—y2)的极大值,则常数a,b应满足的条件是
设随机变量U在[-2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y)].
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设总体X的密度函数为其中θ>0为未知函数,又设x1,x2,…,xn是X的一组样本值,则参数θ的最大似然估计值为__________.
设X1,X2是来自总体N(0,σ2)的简单随机样本,则查表得概率等于__________.
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生NB不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是______.
随机试题
归档文件是指本机关形成的文件。
肺胀的病理因素有
结核性腹膜炎起病方式最多见的是
下列情况中,不能正确反映外科疾病的病因与发病部位的关系的是
总供给等于()之和。
下列诗句中,反映平原与山地气候差异的是()。
Theseveteransstillremembertheirrigorousdisciplineandhardtraininginthesecamps.
向量组(I):α1,α2,…,αm线性无关的充分条件是(I)中()
采用SCSI接口时,一块SCSI主接口卡可以连接含有SCSI协议标准控制器的设备为______。
—It______hourstodothework.—No,itwon’t.
最新回复
(
0
)