首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2019-02-01
86
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。下面证明①,③正确:对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/guj4777K
0
考研数学二
相关试题推荐
设A为10×10矩阵,计算行列式|A一λE|,其中E为10阶单位矩阵,λ为常数.
设n阶矩阵A=,则|A|=____________.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,使=0.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
随机试题
如下哪一项是糖尿病酮症酸中毒昏迷治疗的两项主要措施
某市黄某开办的个体小煤窑只开了采煤通道即开始采煤,主管部门检查后发现该煤窑只有送风口,没有排风口,即书面通知其停业整顿,黄某拖延不改继续采矿,终于因瓦斯浓度太高,发生爆炸致9名矿工死亡黄某的行为构成()
下列选项中哪一种罪,不能因为其为窝藏赃物、抗拒抓捕或者毁灭罪证而当场使用暴力或者以暴力相威胁的,依照抢劫罪的规定定罪处罚?( )
可以免除处罚的是()。
背景某写字楼建设项目,建设单位与施工单位签订土建和装饰装修施工合同,建设单位委托监理单位对该工程土建施工和装饰装修进行工程监理。该工程在装饰装修过程中发生了如下事件:事件一:装饰装修合同中规定5000m2的花岗石板材由建设单位指定厂家,施工单位负责采购
有些教师收受家长的红包后,就给其孩子安排心仪的座位。对此,你怎么看?
兴趣有______、______和______三个特点。
素质教育是我国教育改革和发展的长远方针,其时代特征是()。
WriteanEnglishcompositionin120-150wordsaccordingtotheinstructionsgivenbelow:假如你负责班级墙报(wallnewspaper)工作,写一篇日记,并
A、 B、 C、 D、 D
最新回复
(
0
)