首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2019-02-01
74
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。下面证明①,③正确:对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://kaotiyun.com/show/guj4777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,满足AAT=E(E是n阶单位矩阵,AT是A的转置矩阵),|A|<0,求|A+E|.
设n阶矩阵A=,则|A|=____________.
设A,B是n阶矩阵,则下列结论正确的是()
特征根为r1=0,r2,3=±i的特征方程所对应的三阶常系数线性齐次微分方程为____________.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
随机试题
通过载体中微生物的作用,将废水中的有毒物质分解、去除,达到净化目的。()
下述关于动脉粥样硬化性固缩肾的叙述中哪一项是错误的
妊娠早期的黑加征(Hegar’ssign)是指
2型糖尿病的主要缺陷为
一项糖尿病筛检试验的结果如下:糖尿病筛检试验筛检试验 糖尿病病人 非糖尿病病人 合计尿糖 血糖+ - 14 10 24- + 33 11 44+ + 117
当进近灯具或其支柱本身不够明显时,应涂上有颜色的油漆,颜色可为()。
按照《巴塞尔协议》的规定,商业银行总资本与加权风险总资产的比率不得低于()。
下列事项中,会导致公司资本成本降低的有()。
2015年9月1日,周某向梁某借款50万元,双方签订了借款合同,借款期限1年,年利率为24%。甲公司财务部门经理吴某以财务部门名义为周某的该借款提供担保,与梁某签订了一份加盖甲公司财务部门章的保证合同。借款期限届满后,周某无力清偿借款本息。2016年10月
_____(在某些领域劳动力短缺)willgiveworkersmorerightstodemandhigherwages.
最新回复
(
0
)