首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
给出如下5个命题: (1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点; (2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
admin
2016-06-25
61
问题
给出如下5个命题:
(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x
0
≠0是f(x)的极大值点,则一x
0
必是一f(一x)的极大值点;
(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)=
在(a,+∞)内单调增加;
(3)若函数f(x)对一切x都满足xf"(x)+3x[f’(x)]
2
=1一e
一x
,且f’(x
0
)=0,x
0
≠0,则f(x
0
)是f(x)的极大值;
(4)设函数y=y(x)由方程2y
3
一2y
2
+2xy一x
2
=1所确定,则y=y(x)的驻点必定是它的极小值点;
(5)设函数f(x)=xe
x
,则它的n阶导数f
(n)
(x)在点x
0
=一(n+1)处取得极小值.
正确命题的个数为 ( )
选项
A、2
B、3
C、4
D、5
答案
B
解析
对上述5个命题一一论证.
对于(1),只要注意到:若f(x)在点x
0
取到极大值,则一f(x)必在点x
0
处取到极小值,故该结论错误;
对于(2),对任意x>a,由拉格朗日中值定理知,存在ξ∈(a,x)使f(x)一f(a)=f’(ξ)(x一a),则
由f"(x)>0知,f’(x)在(a,+∞)内单调增加.因此,对任意的x与ξ,a<ξ<x,有f’(x)>f’(ξ),从而由上式得F’(x)>0,所以函数F(x)在(a,+∞)内单调增加,该结论正确;
对于(3),因f’(x
0
)=0,故给定的方程为f"(x
0
)=
,显然,不论x
0
>0,还是x
0
<0,都有f"(x
0
)>0,于是由f’(x
0
)=0与f"(x
0
)>0得f(x
0
)是f(x)的极小值,故该结论错误;
对于(4),对给定的方程两边求导,得
3y
2
y’一2yy’+xy’+y一x=0, ①
再求导,得
(3y
2
一2y+x)y"+(6y一2)(y’)
2
+2y’=1. ②
令y’=0,则由式①得y=x,再将此代入原方程有2x
3
一x
2
=1,从而得y=y(x)的唯一驻点x
0
=1,因x
0
=1时y
0
=1,把它们代入式②得y"|
(1,1)
>0,所以唯一驻点x=1是y=y(x)的极小值点,该结论正确;
对于(5),因为是求n阶导数f
(n)
(x)的极值问题,故考虑函数f(x)=xe
x
的n+1阶导数f
(n+1)
(x),由高阶导数的莱布尼茨公式得
f
(n)
(x)=x(e
x
)
(n)
+n(e
x
)
(n一1)
=(x+n)e
x
,
f
(n+1)
(x)=[x+(n+1)]e
x
;f
(n+2)
(x)=[x+(n+2)]e
x一(n+1)
.
令f
(n+1)
(x)=0,得f
(n)
(x)的唯一驻点x
0
=一(n+1);又因f
(n+2)
(x
0
)=e
一(n+1)
>0,故点x
0
=一(n+1)是n阶导数f
(n)
(x)的极小值点,且其极小值为f
(n)
(x
0
)=一e
一(n+1)
,该结论正确.
故正确命题一共3个,答案选择(B).
转载请注明原文地址:https://kaotiyun.com/show/wIt4777K
0
考研数学二
相关试题推荐
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点共扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重.假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化?
设二阶常系数线性微分方程y″+ay′+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)为偶函数,且满足f′(x)+2f(x)-3|f(t-x)dt=-3x+2,求f(x).
微分方程y′-xe-y+1/x=0的通解为________.
在区间[-1,1]上的最大值为________.
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=|xg(xt)dt,则当x→0时,F(x)是G(x)的().
设a>0,讨论方程aex=x2根的个数.
求下列不定积分。
利用逐项求导,逐项微分求下面级数在其收敛区间上的和:
随机试题
形成两端开放的通道性坏死的缺损称
参与排卵的激素有
蜘蛛痣形成的原因是
A.粉红色乳状脓性痰B.棕红色胶冻状痰C.巧克力色腥味痰D.脓性恶臭痰E.铁锈色痰金黄色葡萄球菌肺炎
作为建设工程项目的组成部分,具有独立的设计文件,竣工后可以独立发挥生产能力或效益的一组配套齐全的工程项目是( )。
【背景资料】某施工企业承担地面建筑的基坑开挖工程。基坑开挖深度为5m,基坑北侧距基坑边缘4m处已有一栋三层永久建筑物,基坑边缘堆有施工单位的大量建筑钢材。基坑所处的地质条件为砂质土层,地下水位在地表以下4m。基坑设计采用钢板桩支护。施工前建设单位
在权力运行体系中,决策是核心,执行是关键,监督是保障。()
下列语句中,有语病的一句是()。
根据我国《宪法》和有关法律的规定,下列表述正确的有()。
A、Hewon’teatdinnertonight.B、Hewantstomakeapizza.C、Heistoohungrytocook.D、Hewantstosavesometime.D
最新回复
(
0
)