首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
admin
2016-03-05
91
问题
设α
1
,α
2
……α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
1
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么条件时,β
1
β
2
……β
s
也为Ax=0的一个基础解系.
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
……α
s
的线性组合,且α
1
,α
2
……α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解.由α
1
,α
2
……α
s
是Ax=0的基础解系,知s=n—r(A).以下分析β
1
β
2
……β
s
线性无关的条件:设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即(t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0,由于α
1
,α
2
……α
s
线性无关,因此有 [*] 当t
1
s
+(一1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0.因此当s为偶数,t
1
≠±t
2
,或当s为奇数,t
1
≠一t
2
时,β
1
β
2
……β
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/z434777K
0
考研数学二
相关试题推荐
设随机变量X服从[0,2]上的均匀分布,Y服从参数为2的指数分布,且X与Y相互独立,令Z=X+Y,求Z的概率密度fz(z);
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
设A,B均是m×n矩阵,则方程组Ax=0与Bx=0同解的充分必要条件是()
设证明:级数收敛,并求其和.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=1,且a1+2a2=a3,A*是A的伴随矩阵.求矩阵A;
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
设函数y=y(x)由方程组所确定,试求t=0
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
随机试题
心动周期按0.8秒计,心房收缩约占()
下列氨基酸可以作为一碳单位供体的是()。
海藻与昆布具有的共同的功效是
社会主义市场经济区别于资本主义市场经济主要之处在于()。
在稳定传热中,通过多层平壁各材料层的热流强度:
已知下列单代号网络计划,该计划中B工作的自由时差为( )。
根据《建设工程质量管理条例》。以下房屋建筑工程最低保修期限最长的是()。
李某年龄16岁,接受叔叔的遗赠10万元,靠此款丰衣足食,李某()。
十八届四中全会决定中指出,中国特色社会主义道路、理论体系、制度是全面推进依法治国的根本遵循。这一论点的主要哲学依据是()。
Onlythroughdiplomaticmeans______.
最新回复
(
0
)