首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α1+t2α3,…,βs=t1α1+t2α1,其中t1,t2为实常数.试问t1,t2满足什么条件时,β1β2……βs也为Ax=0的一个基础解系.
admin
2016-03-05
85
问题
设α
1
,α
2
……α
s
为线性方程组Ax=0的一个基础解系,β
1
=t
1
α
1
+t
2
α
2
,β
2
=t
1
α
1
+t
2
α
3
,…,β
s
=t
1
α
1
+t
2
α
1
,其中t
1
,t
2
为实常数.试问t
1
,t
2
满足什么条件时,β
1
β
2
……β
s
也为Ax=0的一个基础解系.
选项
答案
因为β
i
(i=1,2,…,s)是α
1
,α
2
……α
s
的线性组合,且α
1
,α
2
……α
s
是Ax=0的解,所以根据齐次线性方程组解的性质知β
i
(i=1,2,…,s)均为Ax=0的解.由α
1
,α
2
……α
s
是Ax=0的基础解系,知s=n—r(A).以下分析β
1
β
2
……β
s
线性无关的条件:设k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0,即(t
1
k
1
+t
2
k
s
)α
1
+(t
2
k
1
+t
1
k
2
)α
2
+(t
2
k
2
+t
1
k
3
)α
3
+…+(t
2
k
s-1
+t
1
k
s
)α
s
=0,由于α
1
,α
2
……α
s
线性无关,因此有 [*] 当t
1
s
+(一1)
s+1
t
2
s
≠0时,方程组(*)只有零解k
1
=k
2
=…=k
s
=0.因此当s为偶数,t
1
≠±t
2
,或当s为奇数,t
1
≠一t
2
时,β
1
β
2
……β
s
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/z434777K
0
考研数学二
相关试题推荐
设A,B均是3阶矩阵,且A2=2AB+E,则r(AB-BA+2A)=()
设数列{an}满足a0=2,nan=an-1+n-1(n≥1).证明:
设f(x)在[0,1]上有一阶连续导数,且f(0)=0,∫01xf(x)dx=0.证明:方程x[f(x)]2+f’(x)∫0xtf(t)dt=0在(0,1)内至少有两个不同的实根.
设A,B均为4阶矩阵,它们的伴随矩阵分别为A*与B*,且r(A)=3,r(B)=4,则方程组A*B*x=0()
证明:∫aa+2πln(2+cosx)·cosxdx>0,其中a为任意常数.
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
设函数y=y(x)由方程组所确定,试求t=0
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
如何检查钥匙互锁电磁阀?
Krukenberg瘤是指
食管灼伤患者,治疗应立即
该企业计划实施一致性较高的人力资源政策,应该注意在以下哪些方面保持人力资源实务的一致性()。对人力资源实务在员工个体上的一致性,应当从以下哪些方面进行衡量()。
流浪乞讨人员救助工作方法中,()通常由社会工作者主动到流浪乞讨人员经常出现和活动频繁的地方,然后与他们保持密切接触,通过提供辅导、资料及转介服务,使这些流浪乞讨人员,尤其是流浪儿童得到妥善安置,发挥其潜能并预防不良影响的产生。
侵犯的构成,主要有()方面的因素。
教育是社会主义现代化建设的(),国家保障教育事业的优先发展。
在社会主义运动的历史上,巴黎公社和十月革命具有重要的历史意义。巴黎公社是无产阶级革命的一次伟大尝试。巴黎公社()
材料一:阅读下面的短文,完成61—65题。一切传统都是过去的东西,但并非一切过去的东西都是传统。可是,过去确系传统的一个重要特征,我们不能离开过去与现在的关系而谈传统。传统都有其“原本”,原本是传统的始发言行。传统的始发言行有其特定的原初行
掷一枚均匀的硬币若干次,当正面向上次数大于反面向上次数时停止,则在4次之内停止的概率为().
最新回复
(
0
)