首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=xTAx,其矩阵A满足A3=A,且行列式|A|>0,矩阵A的迹trA<0,则此二次型的规范形为
设二次型f(x1,x2,x3)=xTAx,其矩阵A满足A3=A,且行列式|A|>0,矩阵A的迹trA<0,则此二次型的规范形为
admin
2016-01-23
48
问题
设二次型f(x
1
,x
2
,x
3
)=x
T
Ax,其矩阵A满足A
3
=A,且行列式|A|>0,矩阵A的迹trA<0,则此二次型的规范形为
选项
A、
B、
C、
D、
答案
C
解析
本题考查求抽象二次型的规范形.由题设条件特点只要求得A的特征值即得.
解:由条件A
3
=A可知A的特征值必满足λ
3
=λ,故λ=0,±1.又由|A|=λ
1
λ
2
λ
3
>0,trA=λ
1
+λ
2
+λ
3
<0知,矩阵A的特征值为1,-1,-1,故二次型x
T
Ax的规范形为f(x
1
,x
2
,x
3
)=
注:由n阶矩阵A满足f(A)=O可得A的特征值λ必满足方程f(λ)=0.但由f(λ)=0不能推得f(A)=O,且方程f(λ)=0的根不一定都是矩阵A的特征值.
转载请注明原文地址:https://kaotiyun.com/show/hCw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内存在二阶导数,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得.
设u=u(x,y,z)连续可偏导,令若,证明:u仅为θ与ψ的函数。
设z=f(x,y)二阶可偏导,,且f(x,0)=1,f’y=(x,0)=x,则f(x,y)=________.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程。
设x-(a+bcosx)sinx为x的5阶无穷小,则a=________,b=________.
设f(x)在[0,+∞)上有二阶导数,且f"(x)<0,f’(0)=0,则下列结论正确的是()①当0<t<1时,∫0tf(x)dx>∫01tf(x)dx②当0<t<1时,∫0tf(x)dx<∫01tf(x)dx③当t>1时,∫0t
设是正交矩阵,b>0,c>0求a,b,c的值;
二阶微分方程y’’=e2y,满足条件y(0)=0,y’(0)=1的特解是y=________.
设函数P(x),q(x),f(x)在区间(a,b)上连续,y1(x),y2(x),y3(x)是二阶线性微分方程y”+P(x)y’+q(x)y=f(x)的三个线性无关的解,c1,c2为两个任意常数,则该方程的通解是().
一根长度为1的细棒位于x轴的区间[0,1]上,若其线密度ρ(x)=-x2+2x+1,则该细棒的质心横坐标=________.
随机试题
A.发作性眩晕、耳鸣、听力减弱B.伴鼓膜穿孔C.渐进性眩晕、耳鸣、听力减退、口周麻木D.头部处在一定位置时眩晕E.上感后眩晕、恶心、呕吐、无耳鸣及听力减退上述临床表现符合哪种疾病内耳药物中毒
A、CMB、LDLC、VLDLD、HDLE、IDL体内主要运输外源性甘油三酯的是
葡萄球菌肺炎抗生素治疗的疗程是
单室模型多剂量静脉注射给药稳态最大血药浓度公式是()。
商业汇票的承兑期限最长不超过()。
该公司2003年的资产净利率为()。该公司2003年的应收账款周转率为()次。
依据新的《企业所得税法》,下列适用20%比例税率的是( )。
以下是一个教学片断,找出其中所运用的教学原则。教师:讲课之前,同学们请先告诉我,我手里现在拿的是什么?学生:土豆/马铃薯。教师:对,同学们都很熟悉,也很常见,而且也有不少人喜欢吃吧。那么,马铃薯的发源地是在中国吗?学
阅读下列材料并回答问题材料12004年4月26日,中国国务院新闻办发表《中国的就业状况和政策》白皮书。白皮书指出,中国有近13亿人口,是世界上人口最多的国家,解决就业问题任务繁重、艰巨、紧迫。白皮书指出,近年来,在就业压力持续加大的情况下,
ICMPisshortforInternet(71)MessageProtocol,andisanintegralpartoftheInternet(72)suite(commonlyreferredtoas
最新回复
(
0
)