首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: AB=BA
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: AB=BA
admin
2021-11-25
52
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
AB=BA
选项
答案
由AB=A-B得到A-B-AB+E=E,(E+A)(E-B)=E 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B) 故AB=BA
解析
转载请注明原文地址:https://kaotiyun.com/show/cZy4777K
0
考研数学二
相关试题推荐
设A为三阶非零矩阵,已知A的各行元素和为0,且AB=0,其中B=,则Ax=0的通解为__________。
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
设A是n阶矩阵,E+A可逆,其中E是n阶单位矩阵.证明:(Ⅰ)(E—A)(E+A)-1=(E+A)-1(E—A);(Ⅱ)若A是反对称矩阵,则(E一A)(E+A)-1是正交矩阵;(Ⅲ)若A是正交矩阵,则(E—A)(E+A)-1是
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有()
设β1,β2为非齐次方程组的解向量,α1,α2为对应齐次方程组的解,则()
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
已知P-1AP=,α1是矩阵A的属于特征值λ=2的特征向量,α2,α3是矩阵A的属于特征值λ=6的特征向量,则矩阵P不可能是()
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
随机试题
某预应力混凝土连续梁桥,基于桥梁技术状况检测评定得到的检算系数Z1为1.1,检算得到的荷载效应与抗力效应的比值为1.05。随后进行的荷载试验得到的检算系数Z2为1.0,则重新检算的桥梁承载力满足要求。()
下列哪项不是痫证发作时治标之法
诊断急性胰腺炎时,血清淀粉酶至少应超过
下列关于警告的叙述正确的是()
下列关于应急预案演练说法错误的是()。
建设项目的全过程管理是指( )所进行的项目管理。
“进口口岸”栏应填报()。“提运单号”栏应填报()。
江苏基本实现现代化指标体系,包含了()30项指标。
某饼干公司推出夹心饼干试吃活动,共有夹心饼干600块,其中苹果夹心的有200块,枣泥的有160块,紫薯的有140块,葡萄干的有100块。一个人只能试吃一次,问至少要有多少人参加试吃,才能保证一定有140人吃到相同馅的夹心饼干?()
求f(x)=的间断点并判断其类型.
最新回复
(
0
)