首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-11-11
79
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-l [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1.+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/hDj4777K
0
考研数学二
相关试题推荐
估计积分其中D:{(x,y)|0≤x≤2,0≤y≤2}.
设平面区域D由直线及两条坐标轴所围成.记则有()
设函数在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明在(0,1)内方程f(x)=x有且仅有一个实根.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设矩阵已知线性方程组Ax=β有解但不唯一,试求:a的值;
求z=x+(y-1)arcsin在(0,1)点的偏导数.
f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2.求参数c及此二次型对应矩阵的特征值;
计算下列反常积分(广义积分)的值.
证明:当时,不等式成立.
随机试题
A.银翘散合麻杏石甘汤加减B.五虎场合葶苈大枣泻肺汤C.沙参麦冬汤D.人参五味子汤加减E.参附龙牡救逆汤肺炎风热闭肺证的治疗方剂为()
肝素的抗凝血作用机制是()。
会计凭证按其填制的程序和用途不同,可以分为()。
影响销售渠道选择的因素有()。
调解委员会调解与人民法院处理劳动争议的调解,其主要区别是()
教育的目的是社会需求的集中反映,它集中体现________。
1,3,6,(),15。
根据《中华人民共和国刑法修正案(九)》,下列说法正确的是()。
中世纪大学分为“先生大学”和“学生大学”,属于“学生大学”的是()
Whydoesthewomanneedthejob?
最新回复
(
0
)