首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-11-11
55
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-l [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1.+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/hDj4777K
0
考研数学二
相关试题推荐
对数螺线r=eθ在(r,θ)=处的切线的直角坐标方程.
设函数f(x,y)连续,则等于()
设在[1,+∞)上处处有f”(x)<0,且f(1)=2,f’(1)=一3,证明:在(1,+∞)内方程f(x)=0仅有一个实根.
设矩阵已知线性方程组Ax=β有解但不唯一,试求:正交矩阵Q,使QTAQ为对角矩阵.
设连续型随机变量X的概率密度为f(x),分布函数为F(x),当x>0时满足xf’(x)=(1一x)f(x),当x≤0时,f(x)=0.问常数a为何值时,概率P{a<X<a+1}最大.
求一组向量α1,α2,使之与α3=(1,1,1)T成为R3的正交基;并把α1,α2,α3化成R3的一个标准正交基.
设随机变量X服从T(N),判断Y=X2,Z=所服从的分布。
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
设f(x)在[a,b]上有二阶连续导数,证明
计算下列反常积分(广义积分)的值.
随机试题
女性,40岁,先天性主动脉瓣狭窄,PDE示中度狭窄。该患者杂音的部位及时期为
流动比率越低,说明营运资本(流动资产减流动负债的余额)越多,对债权人而言,其债权越安全。()[2008年考题]
降低房地产投资变现风险的对策有()等。
设备和人员安排有灵活性,但要求劳动者技术高,在制品较多。适合处理小批量、顾客化程度高的生产或服务的生产运作系统设施布置的形式是()。
打造“全城一景”开封文化传承核心区建设宋韵重现新华网河南频道7月30日讯大河网一河南日报报道:7月28日,记者在朱仙镇国家文化生态旅游示范区漕运码头施工现场看到,一块块巨大的青石正在被工人整齐地砌在园区河道大堤上。作为开封目前在建的最大的文化产业
气候变暖后,一般中高纬度地区粮食产量增加,而热带和亚热带只能以一些耐高温作物为主,产量下降,尤其是非洲和拉丁美洲。全球最贫穷的地区饥荒危机将增加,饥饿和营养不良引起机体免疫力下降,增加人们对疾病的易感性。由此能推出()。
对于一种硬塑料a,在铸造过程中必须促使相对复杂的分子在一个被称为聚合的过程中连接起来。聚合过程是放热的,也就是说,每次分子连接时都会产生少量的热量。另外,分子连接的速度随温度的升高而加速。下面哪一项可以从上文中推出?()
学生对教材内容不感兴趣。教师可以自编教材。()
Thisisthegoldenageofmedicalresearch.Andmanymedicaldiscoverieshavemaderealdifferencestothelivesofmanypeople,
若要确保输入的联系电话值只能为8位数字,应将该字段输入掩码设置为
最新回复
(
0
)