首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α1=(a一1,一a,1)T。分别是λ1,λ2对应的特征向量. 又A的伴随矩阵A*有一个特征值为A*,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,a+1,2)T,α1=(a一1,一a,1)T。分别是λ1,λ2对应的特征向量. 又A的伴随矩阵A*有一个特征值为A*,属于λ0的特征向量为α0=(2,一5a,2a+1)T.试求a、λ0
admin
2016-01-11
67
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=(1,a+1,2)
T
,α
1
=(a一1,一a,1)
T
。分别是λ
1
,λ
2
对应的特征向量.
又A的伴随矩阵A
*
有一个特征值为A
*
,属于λ
0
的特征向量为α
0
=(2,一5a,2a+1)
T
.试求a、λ
0
的值,并求矩阵A.
选项
答案
由于|A|=λ
1
λ
2
λ
3
=一2,故A可逆.由于α
0
是A
*
的属于λ
0
的特征向量.所以A
*
α
0
=λ
0
α
0
.于是AA
*
α
0
=λ
0
Aα
0
,即|A|α
0
=λ
0
Aα
0
,亦即一2α
0
=λ
0
Aα
0
. 故[*]. 从而[*]是A的特征值,α
0
是A的关于[*]对应的特征向量. 又由于α
1
,α
2
为实对称矩阵A的不同特征值的特征向量,故α
1
,α
2
正交,即α
1
T
α
2
=0,得a=±1. 无论a=1还是a=一1,则有α
0
与α
1
,α
2
中任何一个都线性无关,所以α
0
应是矩阵A的属于λ
3
的特征向量,于是有[*]. 从而λ
0
=2.且α
0
与α
1
正交,即α
0
T
α
1
=5a
2
+a—4=0,则[*]或a=一1,于是a=一1,λ
0
=2. [*]
解析
本题考查实对称矩阵相似对角矩阵的逆问题.运用实对称矩阵不同的特征值所对应的特征向量必正交的性质来确定a与λ
0
.
转载请注明原文地址:https://kaotiyun.com/show/2e34777K
0
考研数学二
相关试题推荐
设二维随机变量(X1,X2)的概率密度函数为f(x1,x2),则随机变量(y1,y2)(其中Y1的概率密度函数f1(y1,y2)等于()
设连续型随机变量X的概率密度为f(x),且f(-x)=f(x),x∈(-∞,+∞),记Y=|X|,EX存在,则X与Y()
(Ⅰ)证明:方程x=1+2lnx在(e,+∞)内有唯一实根ξ;(Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2lnxn-1(n=1,2,…),证明:xn=ξ.
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.设Z1,Z2,…,Zn为总体Z的简单随机样本,求σ的最大似然估计量.
设A,B均是n阶方阵,已知A-E可逆,|B|=1,且(A-E)-1=B*-E,其中B*为B的伴随矩阵.则A-1=________.
设Z=X+Y,其中随机变量x与Y相互独立,且分布函数分别为X与Z是否相关?说明理由.
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点η∈(0,1),使得f”η)=2.
设D为由所围区域,计算
求由半球面与旋转抛物面x2+y2=4z所围成的立体的全表面积.
设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=________.
随机试题
女性,47岁。右腰部疼痛1年,右侧腹部有一高密度阴影,诊断考虑为上尿路结石,但应排除下列疾病,除了
作为基坑工程围护结构的板(桩)墙结构形式有()。
下列关于《钢结构工程施工质量验收规范》中单层钢结构安装工程的一般规定,正确的是()。
某市居民张某将自有的一套房产出典给在本市工作的某外籍个人,张某需缴纳房产税。()
人们对学习本身的兴趣所引起的动机称为()。(2013.山东)
货币需求函数[金融联考2002研;中央财经大学2002研;华中理工大学2001研]
测试是保证软件质量的重要手段。根据国家标准GB 8566—1988《计算机软件开发规范》的规定,应该在(10)阶段制定系统测试计划。
Americanshaveacrazeforthesun,abeliefthatsunwillcurechronicillness,andthatwherethereissunshinetherewillbe
()必修课()奖学金()校纪()毕业典礼
法律
最新回复
(
0
)