首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
admin
2019-07-22
95
问题
已知n阶矩阵A满足(A-aE)(A-bE)=0,其中a≠b,证明A可对角化.
选项
答案
首先证明A的特征值只能是a或b. 设λ是A的特征值,则(λ-a)(λ-b)=0,即λ=a或λ=b. 如果b不是A的特征值,则A-bE可逆,于是由(A-aE)(A-bE)=0推出A-aE=0,即A=aE是对角矩阵. 如果b是A的特征值,则|A-bE|=0.设η
1
,η
2
,…,η
t
是齐次方程组(A-bE)X=0的一个基础解系(这里t=n-r(A-bE),它们都是属于b的特征向量.取A-bE的列向量组的一个最大无关组γ
1
,γ
2
,…,γ
k
,这里k=r(A-bE).则γ
1
,γ
2
,…,γ
k
是属于a的一组特征向量.则有A的k+t=n个线性无关的特征向量组γ
1
,γ
2
,…,γ
k
;η
1
,η
2
,…,η
t
,因此A可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/hFN4777K
0
考研数学二
相关试题推荐
计算
求∫f(χ)dχ.
设α1,α2,α3,β1,β2均为四维列向量,且|A|=|α1,α2,α3,β1|=m,|B|=|α1,α2,β2,α3|=n,则|α3,α2,α1,(β1+β2)|=()
参数a取何值时,线性方程组有无数个解?求其通解.
设f(x)具有二阶连续导数,且f’(1)=0,,则()
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设f(x)在[0,a]上一阶连续可导,f(0)=0,令|f’(x)|=M.证明:|∫0af(x)dx|≤M.
设f’(x)存在,求极限,其中a,b为非零常数.
计算其中D由不等式x2+y2≤x+y所确定.
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
随机试题
反义词
狭义地讲,指数是反映不能直接相加的多种事物数量综合变动情况的()
A.厚朴、枳实B.枳实、甘草C.甘草、人参D.人参、芍药E.芍药、柴胡四逆散与逍遥散均含有的药物是
以下关于法和和谐社会的关系,说法正确的是:
在一起故意杀人案件的侦查过程中,公安机关决定组织证人进行辨认,以确定犯罪嫌疑人。那么被辨认的人数不得少于几人?()
定金与预付款、押金的主要区别是()。
政府质量监督机构在工程开工前的质量检查工作有()。
近代思想家龚自珍说过:“自古及今,法无不改,势无不积,事例无不变迁,风气无不移易。”这说明()。
2013年10月发布的《国家卫星导航产业中长期发展规划》显示,到2020年,我国卫星导航系统产值将超过()亿元,将建成由()余颗卫星及地面运行控制系统组成的全球卫星导航系统,具备为全球用户提供导航定位服务的能力。
小石城事件
最新回复
(
0
)