首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-09-13
60
问题
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
当a=0时,等号成立;当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)-f(b)]-[f(a)-f(0)]=afˊ(ξ
2
)-afˊ(ξ
1
). 因为fˊ(x)在(0,c)内单调减少,所以fˊ(ξ
2
)≤fˊ(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/hPT4777K
0
考研数学三
相关试题推荐
建设现代化经济体系是党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作出的重大决策部署,既是一个重大理论命题,又是一个重大实践课题。因为形成现代化经济体系()。
在中国新民主主义革命中,实现无产阶级领导权的核心问题是()。
处理好民族问题、促进民族团结,是关系祖国统一和边疆巩固的大事,是关系民族团结和社会稳定的大事,是关系国家长治久安和中华民族繁荣昌盛的大事。大学生都要像爱护自己的眼睛一样维护民族团结,像爱护自己的生命一样维护社会稳定,自觉做民族团结进步事业的建设者、维护者、
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{丨X+Y丨≥6}≤___________.
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
求的间断点并分类.
随机试题
下列有关各RNA分子的叙述,错误的是
手工电弧焊焊补汽轮机叶片时可选用哪些焊条?各有何特点?
发育性髋关节脱位的病理改变主要发生在
以下不属于个体生物特征的是()
苏联心理学家维果茨基认为,学生的发展有两种水平:一种是学生独立活动时所能达到的解决问题的水平;另一种是学生通过成人指导可能达到的水平。而这两者之间的差异,我们称之为()。
管平湖是古琴演奏家,演奏的古琴曲风格朴素,形成了有重要影响的“_________”风格。
FreeStatinsWithFastFoodCouldNeutralizeHeartRiskFastfoodoutletscouldprovidestatindrugsfreeof【C1】______sotha
Wherearethespeakers?
A、Acheckingaccount.B、Acurrentaccount.C、Acreditcardaccount.D、Asavingsaccount.D男士问女士想要开一个什么账户,女士回答说储蓄账户。由此可知,女士想开一个储蓄
A、Theyeatorspoilcrops.B、Theyattackbirdsandanimals.C、Theydestroydamsandbuildings.D、Theycarrydiseases.D[听力原文]Wh
最新回复
(
0
)