首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-09-13
55
问题
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
当a=0时,等号成立;当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)-f(b)]-[f(a)-f(0)]=afˊ(ξ
2
)-afˊ(ξ
1
). 因为fˊ(x)在(0,c)内单调减少,所以fˊ(ξ
2
)≤fˊ(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/hPT4777K
0
考研数学三
相关试题推荐
材料1 习近平总书记在中国政法大学考察时勉励青年学子:“要正确对待一时的成败得失,处优而不养尊,受挫而不短志,使顺境逆境都成为人生的财富而不是人生的包袱。”青春是用来奋斗的,然而不是所有的青年人都愿意选择奋斗。生在富足生活中,长在安定环境下,难免出现满
在新的历史条件下,与马克思所处的时代相比,深化对创造价值的劳动的认识主要有()。
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
用比值审敛法判别下列级数的收敛性:
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
设函数f(x)存闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f’(ξ)+f’(η)=ξ2+η2.
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
随机试题
组织公关调查活动的第一个具体环节是()。
坚持富国和强军相统一是我们党的一贯主张。实现富国和强军统一的重要途径是()。
不是导致牙釉质发育不全病因的是()
对耐药性金黄色葡萄球菌有杀菌作用的药组是()。
门窗工程应对()进行隐蔽验收。
事故调查组提出的事故调查报告经()同意后,调查工作即告结束。
IS09000的作用。
河北省从西北向东南依次为()三大地貌单元。
算法的空间复杂度是指()。
Mr.Ferrishasbeena______customer,sowewillofferhima20%discountonnewarrivals.
最新回复
(
0
)