设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.

admin2016-09-13  52

问题 设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.

选项

答案当a=0时,等号成立;当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ1∈(0,a),ξ2∈(b,a+b),ξ1<ξ2,使得 [f(a+b)-f(b)]-[f(a)-f(0)]=afˊ(ξ2)-afˊ(ξ1). 因为fˊ(x)在(0,c)内单调减少,所以fˊ(ξ2)≤fˊ(ξ1),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).

解析
转载请注明原文地址:https://kaotiyun.com/show/hPT4777K
0

随机试题
最新回复(0)