首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-09-13
92
问题
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
当a=0时,等号成立;当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)-f(b)]-[f(a)-f(0)]=afˊ(ξ
2
)-afˊ(ξ
1
). 因为fˊ(x)在(0,c)内单调减少,所以fˊ(ξ
2
)≤fˊ(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/hPT4777K
0
考研数学三
相关试题推荐
武汉市肺炎疫情防控指挥部发布通知,明确武汉市住宅小区封闭管理主要措施,要求住宅小区一律实行封闭管理,小区居民出入一律严格管控。老旧小区、开放式居住区通过打围方式实现硬隔离。出入口安排人员24小时值班值守,测温登记,审核放行。这一做法()
推动人的全面发展是马克思主义的本质要求。《共产党宣言》指出:“代替那存在着阶级和阶级对立的资产阶级旧社会的,将是这样一个联合体,在那里,每个人的自由发展是一切人的自由发展的条件。”这段话所谓人的自由发展是()。
毛泽东同志说:“‘实事’就是客观存在着的一切事物,‘是’就是客观事物的内部联系,即规律性,‘求’就是我们去研究。”毛泽东同志还把实事求是形象地比喻为“有的放矢”。毛泽东同志所说的“矢”是()。
设对于半空间x>0内的任意光滑的定向封闭曲面∑,恒有其中f(x)在(0,+∞)内具有一阶连续导数.(1)求出f(x)满足的微分方程;(2)若f(1)=e2,求f(x).
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
设周期为2π的周期函数f(x)在区间[-π,π)上的表达式为f(x)=e2x,试把它展开成傅里叶级数,并求级数的和.
用适当方法判别下列级数的收敛性:
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:
随机试题
A、 B、 C、 D、 B
招标文件的组成要素包括()。
业主方的项目管理包括项目实施的全过程,其工作内容不包括()。
与理财计划相比,私人银行业务的核心是个人理财,更加强调()。
旅游经营者已投保旅游责任险,旅游者因保险责任事故仅起诉旅游经营者的,人民法院可以应当事人的请求将()列为第三人
制定企业薪酬管理制度的基本依据包括()。
下列关于二十四节气说法错误的是()。
1950年6月,朝鲜战争爆发,美国宣布武装援助南朝鲜,同时命令其第七舰队开入台湾海峡,公然干涉中国内政。中国政府在美周把朝鲜战争的战火烧到鸭绿江边的时候,毅然做出抗美援朝的决策。中朝两国人民和军队经过近三年艰苦作战和谈判斗争,终于在1953年7月迫使美国代
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PT.AP为正定矩阵.
下列叙述中正确的是
最新回复
(
0
)