首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L0:x+1=y-3=z/2相交,求此直线L的方程.
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L0:x+1=y-3=z/2相交,求此直线L的方程.
admin
2021-02-25
34
问题
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L
0
:x+1=y-3=z/2相交,求此直线L的方程.
选项
答案
解法1:过点P(-1,0,4)且平行于已知平面π的平面方程为3(x+1)-4y+(z-4)=0,它与直线L
0
的交点为(15,19,32),即为L
0
与L的交点.由两点式得L的方程[*],即 [*] 解法2:直线L
0
的参数方程为[*], 设L
0
上点M(x,y,z)是L与L
0
的交点,则[*],即 (t,3+t,2t-4)·(3,-4,1)=t-16=0, 从而t=16,L的方向向量[*],由点向式得L的方程为[*] 解法3:过点P平行于平面π的平面π
1
与过点P及直线L
0
的平面π
2
的交线即为所求直线L又L
0
过点P
0
(-1,3,0). π
1
:3(x+1)-4y+(z-4)=0,即3x-4y+z-1=0. π
2
的法向量[*],L
0
的方向向量s
0
=(1,1,2),故取 [*] 即π
2
的方程为10(x+1)-4y-3(z-4)=0,即 10x-4y-3z+22=0, 故所求直线L的方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OO84777K
0
考研数学二
相关试题推荐
(94年)设当x>0时,方程有且仅有一个解.求k的取值范围.
(1998年)已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,-1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3
计算二重积分,其中D={(r,θ)|0≤r≤secθ,}.
已知f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,且f(0)=0。求f(x)在区间[0,3π/2]上的平均值;
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
(1990年)证明:当χ>0,有不等式arctanχ+.
(2002年)设函数f(χ)在χ=0的某邻域内具有二阶连续导数,且f(0)≠0,f′(0)≠0,f〞(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
A2-B2=(A+B)(A-B)的充分必要条件是_______.
二次积分f(x,y)dy写成另一种次序的积分是()
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
随机试题
Workaholism(工作狂)canbeaseriousproblem.Trueworkaholics(工作狂)wouldratherworkthandoanythingelseandtheyprobablydon’t
雌激素的生理作用是
不属于僵蚕性状鉴别特征的是
公路施工对生态环境的当期影响是临时的,一旦施工结束,这类影响即可自然消失。()
背景资料建设单位G公司投资新建了一化工生产装置。工程进展到投料负荷试运行阶段,建设单位要求施工总承包单位A和相关单位按照负荷试运行的分工要求进行各自准备工作,编制了试运行方案。在负荷试运行开始之前,G公司的大部分操作人员刚刚实习归来,正在熟悉和了
由有经验的专家依赖自己的知识、经验和分析判断能力,对企业的人力资源管理需求进行直觉判断与预测,这种方法称为()。
在运用宏观调控的手段上,社会主义国家除了利用市场的作用外,还需要利用国家行政手段。()
试评述行为主义的历史贡献,以及心理学自身的发展对行为主义的影响。
外国人在我国领域外对我国国家或者公民犯罪,适用我国刑法,必须是()。
BiologicalMimicryTheInventionofVelcroAftertakinghisdogforawalkonedayintheearly1940s,GeorgedeMestral
最新回复
(
0
)