首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L0:x+1=y-3=z/2相交,求此直线L的方程.
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L0:x+1=y-3=z/2相交,求此直线L的方程.
admin
2021-02-25
50
问题
设直线L过点P(-1,0,4),与平面π:3x-4y+z=10平行,且与直线L
0
:x+1=y-3=z/2相交,求此直线L的方程.
选项
答案
解法1:过点P(-1,0,4)且平行于已知平面π的平面方程为3(x+1)-4y+(z-4)=0,它与直线L
0
的交点为(15,19,32),即为L
0
与L的交点.由两点式得L的方程[*],即 [*] 解法2:直线L
0
的参数方程为[*], 设L
0
上点M(x,y,z)是L与L
0
的交点,则[*],即 (t,3+t,2t-4)·(3,-4,1)=t-16=0, 从而t=16,L的方向向量[*],由点向式得L的方程为[*] 解法3:过点P平行于平面π的平面π
1
与过点P及直线L
0
的平面π
2
的交线即为所求直线L又L
0
过点P
0
(-1,3,0). π
1
:3(x+1)-4y+(z-4)=0,即3x-4y+z-1=0. π
2
的法向量[*],L
0
的方向向量s
0
=(1,1,2),故取 [*] 即π
2
的方程为10(x+1)-4y-3(z-4)=0,即 10x-4y-3z+22=0, 故所求直线L的方程为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OO84777K
0
考研数学二
相关试题推荐
设y=f(χ,t),而t是由方程G(χ,y,t)=0确定的χ,y的函数,其中f(χ,t),G(χ,y,t)为可微函数,求.
(2001年试题,七)设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex一f(x),且f(0)=0,g(0)=2,求
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
设f(x)=∫xx+π/2|sint|dt。证明f(x)是以π为周期的周期函数;
(2009年)设y=y(χ)在区间(-π,π)内过点()的光滑曲线.当-π<χ<0时,曲线上任一点处的法线都过原点;当0≤χ<π时,函数y(χ)满足y〞+y+χ=0.求函数y(χ)的表达式.
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
交换二次积分次序:∫01dyf(x,y)dx=____________。
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
(1)设y=y(χ,t),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求.(2)设z=z(χ,y)由方程z+lnz-∫yχdt=1确定,求.
设f(χ)连续,且对任意的χ,y∈(-∞,+∞)有f(χ+y)=f(χ)+f(y)+2χy,f′(0)=1,求f(χ).
随机试题
以下属于穆旦的作品的是()
患者,先见全身战栗,继而汗出,其诊断是
A.隆起型和表浅型B.凹陷癌和弥漫型癌C.高分化癌和低分化癌D.膨胀型和浸润型E.息肉性型和溃疡型根据生长方式胃癌可分为
行政处罚由具有处罚权的行政机关()实施。
中标人拒绝提交履约保证金的,应( )。
通常把产生能量的能量源或拥有能量的能量载体作为( )。
材料一:从2007年11月9日到15日,国家法定节假日调整方案在新华网、人民网等网站上公布,引起强烈反响。据初步统计,大约155万网民参加了此项调查。国家法定节假日调整方案在网上开展民意调查的同时。也印发给中央和国家机关、各地党委和政府、军队系统、各民主党
任何话语交际都是由三个关键部分构成的:信息发送者、信息、信息接受者。其中发送者与接受者的关系在很大程度上决定了交际过程中传送的是什么性质的信息。在自由、平等、相互尊重的发送者与接受者关系中,传送的信息是说理。反过来说也是一样,为了传送说理这种信息,交际双方
甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?
根据所给资料,回答下列问题。2011年上交所成交金额最高的月份,深交所上市公司的市价总值比上月()。
最新回复
(
0
)