首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若i1i2…in是一个n级排列,则下面两个矩阵合同:
证明:若i1i2…in是一个n级排列,则下面两个矩阵合同:
admin
2020-09-25
55
问题
证明:若i
1
i
2
…i
n
是一个n级排列,则下面两个矩阵合同:
选项
答案
记 [*] 对于二次型f(x
1
,x
2
,…,x
n
)=x
T
Bx=[*]作可逆线性变换[*] [*] 所以,两矩阵合同,其中x=(x
1
,x
2
,…,x
n
)
T
,y=(y
1
,y
2
,…,y
n
)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/hPx4777K
0
考研数学三
相关试题推荐
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_________.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设4阶矩阵A与B相似,矩阵A的特征值为则行列式|B-1一E|=________。
已知,A*是A的伴随矩阵,那么A*的特征值是________。
设A,B均为3阶矩阵,且满足AB=2A+B,其中A=,则|B-2E|=_______.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
已知X=AX+B,其中求矩阵X.
设A、B分别为m、n阶正定矩阵,试判定分块矩阵C=是否正定矩阵.
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
随机试题
对于医疗器械的消毒,应用( )。
直接接触无菌药品的包装材料最后一次精洗用水应符合无菌原料药精制工艺用水应符合
A.一次常用量B.3日常用量C.7日常用量D.15日常用量哌醋甲酯用于治疗儿童多动症时,每张处方不得超过
明框玻璃幕墙、半隐框玻璃幕墙、隐框幕墙不宜采用哪种玻璃?[2000-078]
按现行会计制度及有关规定,下列收入项目中属于施工企业其他业务收入的有 ( )。
江苏省某市海关在对甲进行过关检查时,认为其有走私嫌疑,遂限制其人身自由24小时,该行为不属于()。
甲在抢夺了乙的钱包之后逃跑,乙在追甲的过程中被车撞死,对此下列说法正确的是()。
甲捡到了一只母山羊饲养起来并积极寻找失主,后失主乙找到甲要羊。本案应如何处理?()
在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻。有一位观众已翻牌两次,一次获
最高法院再也来不及处理那些它同意审理的数目庞大的案件了。最高法院每年计划听取160个小时口头申诉,然而明年有108个小时被今年剩下的案子占去了。当然不能要求最高法院再增加本已令它难以负荷的时间了,解决这个问题的最合理的长远办法便是让法院不用听取许多案件的口
最新回复
(
0
)