首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
admin
2019-03-13
58
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组Ax=b的通解是___________。
选项
答案
([*],0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系只含有4一r(A)=1个解向量。又因为
(α
1
+αη+2α
3
)一(3α
1
+α
2
)=2(α
3
一α
1
)=(0,一4,一6,一8)
T
是Ax=0的解,所以其基础解系为(0,2,3,4)
T
,由
A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,
可知
(α
1
+α
2
+2α
3
)是方程组Ax=b的一个解,根据非齐次线性方程组的解的结构可知,其通解是(
,0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/xlP4777K
0
考研数学三
相关试题推荐
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P—1AP)T属于特征值λ的特征向量是()
设A、B均为三阶矩阵,E是三阶单位矩阵,已知AB=2A+3B,A=,则(B一2E)—1=________。
求|z|在约束条件下的最大值与最小值。
计算积分∫—11dy+sin3y)dx。
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
设问k为何值,可使:(Ⅰ)r(A)=1;(Ⅱ)r(A)=2;(Ⅲ)r(A)=3。
下列条件不能保证n阶实对称阵A正定的是()
设f(u,υ)具有连续偏导数,且fu’(u,υ)+fυ’(u,υ)=sin(12+υ)eu+υ,求y(x)=e—2xf(x,x)所满足的一阶微分方程,并求其通解。
用配方法化二次型f(x1,x2,x3)=x12+212+213-432为标准形.
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
随机试题
拥大盖,策驷马,意气扬扬甚自得也拥:
试论述DHTML技术的主要组成部分。
Theintelligenceyouhave______younumeroustreasure.
支气管扩张常见痰液性状为
【背景资料】某高校新建一栋20层留学生公寓,主体是全现浇钢筋混凝土框架一剪力墙结构,建筑面积为38400m2,建筑高度为62.6m,筏板基础,筏板厚度1.4m。施工单位依据基础形式、工程规模、现场和机具设备条件以及土方机械的特点,选择了
下列项目中,属于费用要素特点的有()。
现在激励理论包括两种形式,即满足/内容理论和过程理论,又大概可分为:()公平理论和目标设置理论等几大类。
Lookatthechartsbelow.Theyshowtheperformancerating,asmarksoutof20,thatasupermarketchaingavetoeightofitssu
【B1】【B2】
ExerciseIsAllYouGetattheGymA)Whenyougotothegym,doyouwashyourhandsbeforeandafterusingtheequipment?Bring
最新回复
(
0
)