首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得F(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得F(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
admin
2021-11-09
77
问题
设f(x)在(-∞,+∞)连续,存在极限
.证明:
(Ⅰ)设A<B,则对
μ∈(A,B),
ξ∈(-∞,+∞),使得F(ξ)=μ;
(Ⅱ)f(x)在(-∞,+∞)有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]=B>μ可知,[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,F(X
1
)<μ<f(X
2
),由连续函数介值定理知[*](-∞,+∞),使得F(ξ)=μ. (Ⅱ)因[*],由存在极限的函数的局部有界性定理可知,[*]X
1
使得当x∈(-∞,X
1
)时f(x)有界;[*]X
2
(>X
1
)使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(-∞,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Sy4777K
0
考研数学二
相关试题推荐
已知,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由.
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式证明:f"(u)+fˊ(u)/u=0;
设函数y=y(x)由方程2xy=x+y所确定,则.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为(-1,1,0,2)T+k(1,-l,2,0)T,则求α1,α2,α3,α4,β的一个极大无关组.
当x﹥0时,证明:.
设f(x)在[a,b]上连续,在(a,,b)内二阶连续可导,证明:存在∈(a,b),使得.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0﹤θ﹤1).证明:.
求由方程x2+y3-xy=0确定的函数在x﹥0内的极值,并指出是极大值还是极小值。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为().
随机试题
集体主义是由中国革命道德的()的核心所决定的。
生产性项目总投资包括铺底流动资金和:
某单层双跨等高钢筋混凝土柱厂房。其平面布置图、排架简图及边柱尺寸如图1-18所示。该厂房每跨各设有20/5t桥式软钩吊车两台。吊车工作级别为A5级,吊车参见表1-1。已知,作用在每个吊车车轮上的横向水平荷载(标准值)为TQ,试问:在进行排架计算时,作
在专项预案的基础上,根据具体情况而编制的,针对特定的具体场所,通常是该类型事故风险较大的场所、装置或重要防护区域等所制定的预案,这种预案属于()。
实行金融期货交易的限仓制度目的有()。
资产负债表是()。
WBS的编码系统应该帮助项目成员()。
在数据库设计中用关系模型来表示实体和实体间的联系。关系模型的结构是()。
Completetheformbelow.WriteNOMORETHANTHREEWORDSforeachanswer.
A、Schoolsuseprivatedetectionservices.B、Teachersdiscussessaytopicswiththeirstudents.C、Teachersaskstudentstoturni
最新回复
(
0
)