首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得F(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
设f(x)在(-∞,+∞)连续,存在极限.证明: (Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得F(ξ)=μ; (Ⅱ)f(x)在(-∞,+∞)有界.
admin
2021-11-09
58
问题
设f(x)在(-∞,+∞)连续,存在极限
.证明:
(Ⅰ)设A<B,则对
μ∈(A,B),
ξ∈(-∞,+∞),使得F(ξ)=μ;
(Ⅱ)f(x)在(-∞,+∞)有界.
选项
答案
利用极限的性质转化为有界区间的情形. (Ⅰ)由[*]=A<μ及极限的不等式性质可知,[*]X
1
使得f(X
1
)<μ. 由[*]=B>μ可知,[*]X
2
>X
1
使得f(X
2
)>μ.因f(x)在[X
1
,X
2
]连续,F(X
1
)<μ<f(X
2
),由连续函数介值定理知[*](-∞,+∞),使得F(ξ)=μ. (Ⅱ)因[*],由存在极限的函数的局部有界性定理可知,[*]X
1
使得当x∈(-∞,X
1
)时f(x)有界;[*]X
2
(>X
1
)使得当x∈(X
2
,+∞)时f(x)有界.又由有界闭区间上连续函数的有界性定理可知,f(x)在[X
1
,X
2
]上有界.因此f(x)在(-∞,+∞)上有界.
解析
转载请注明原文地址:https://kaotiyun.com/show/5Sy4777K
0
考研数学二
相关试题推荐
极限=.
过点P(1,0)作曲线的切线,求:该切线与曲线及x轴围成的平面图形的面积;
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,fˊ(1)=1,求函数f(u)的表达式.
设f(x)在[0,1]上连续可导,且f(0)=0,证明:存在ε∈[0,1],使得f’(ε)=.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c
设f(x)在[1,+∞)内可导,f’(x)<0且=a﹥0,令an=.证明:{an}收敛且0≤.
设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(x|y)为().
二阶常系数非齐次线性微分方程y"-2y’-3y=(2x+1)e-x的特解形式为()。
设求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
随机试题
A.发作性眩晕、耳鸣、听力减弱B.伴鼓膜穿孔C.渐进性眩晕、耳鸣、听力减退、口周麻木D.头部处在一定位置时眩晕E.上感后眩晕、恶心、呕吐、无耳鸣及听力减退上述临床表现符合哪种疾病内耳药物中毒
A、CMB、LDLC、VLDLD、HDLE、IDL体内主要运输外源性甘油三酯的是
葡萄球菌肺炎抗生素治疗的疗程是
单室模型多剂量静脉注射给药稳态最大血药浓度公式是()。
商业汇票的承兑期限最长不超过()。
该公司2003年的资产净利率为()。该公司2003年的应收账款周转率为()次。
依据新的《企业所得税法》,下列适用20%比例税率的是( )。
以下是一个教学片断,找出其中所运用的教学原则。教师:讲课之前,同学们请先告诉我,我手里现在拿的是什么?学生:土豆/马铃薯。教师:对,同学们都很熟悉,也很常见,而且也有不少人喜欢吃吧。那么,马铃薯的发源地是在中国吗?学
阅读下列材料并回答问题材料12004年4月26日,中国国务院新闻办发表《中国的就业状况和政策》白皮书。白皮书指出,中国有近13亿人口,是世界上人口最多的国家,解决就业问题任务繁重、艰巨、紧迫。白皮书指出,近年来,在就业压力持续加大的情况下,
ICMPisshortforInternet(71)MessageProtocol,andisanintegralpartoftheInternet(72)suite(commonlyreferredtoas
最新回复
(
0
)