首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
admin
2021-11-09
25
问题
设y=f(χ)为区间[0,1]上的非负连续函数.
(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
(2)设f(χ)在(0,1)内可导,且f′(χ)>-
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt, 即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0. 令φ(χ)=χ∫
1
χ
f(t)dt,φ(0)=φ(1)=0, 根据罗尔定理,存在c∈(0,1),使得φ′(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(χ)=χf(χ)-∫
χ
1
f(t)dt,因为h′(χ)=2f(χ)+χf′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/hcy4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,eχ-1>(1+χ)ln(1+χ).
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
证明:当χ>0时,.
求曲线y=的上凸区间.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中,①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的有()个.
设A为3阶方阵,如果A-1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=.
设,问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
随机试题
关于子宫的描述正确的是
甲与乙分别出资60万元和240万元共同设立新雨开发有限公司(下称新雨公司),由乙任执行董事并负责公司经营管理,甲任监事。乙同时为其个人投资的东风有限责任公司(下称东风公司)的总经理,该公司欠白云公司货款50万元未还。乙与白云公司达成协议约定:若3个月后仍不
公平理论认为,员工的工作动机,不仅仅受到他们所得的相对报酬的影响,更重要的是受到绝对报酬的影响。()
美国次级贷款危机已经演变成了一场全球金融危机和经济危机。在此背景下,全球证券市场的发展呈现出()等趋势。
按照职业操守准则规定,符合公平对待客户的是()。
(2014年)关于制定劳动规章制度的说法,正确的是()。
关于调查表的填写,下列说法错误的是
2005年6月29日,陈某因犯诬告陷害罪被人民法院判处有期徒刑2年,缓刑3年。2008年3月5日,陈某又犯诈骗罪。对于陈某的量刑,下列表述哪些是错误的?()
学生和课程的关系模式定义为s(S#,Sn,Sd,Dc,SA)(其属性分别为学号、姓名、所在系、所在系的系主任、年龄);C(C#,Cn,P#)(其属性分别为课程号、课程名、先选课);SC(S#,C#,G)(其属性分别学号、课程号和成绩)。关系中包含对
在声音的数字化过程中,采样时间、采样频率、量化位数和声道数都相同的情况下,所占存储空间最大的声音文件格式是()。
最新回复
(
0
)