首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,
admin
2021-11-09
65
问题
设y=f(χ)为区间[0,1]上的非负连续函数.
(1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
(2)设f(χ)在(0,1)内可导,且f′(χ)>-
,证明(1)中的c是唯一的.
选项
答案
(1)S
1
(c)=cf(c),S
2
(c)=∫
c
1
f(t)dt=-∫
1
c
f(t)dt, 即证明S
1
(c)=S
2
(c),或cf(c)+∫
1
c
f(t)dt=0. 令φ(χ)=χ∫
1
χ
f(t)dt,φ(0)=φ(1)=0, 根据罗尔定理,存在c∈(0,1),使得φ′(c)=0,即cf(c)+∫
1
c
f(t)dt=0,所以S
1
(c)=S
2
(c),命题得证. (2)令h(χ)=χf(χ)-∫
χ
1
f(t)dt,因为h′(χ)=2f(χ)+χf′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/hcy4777K
0
考研数学二
相关试题推荐
证明:当χ>0时,eχ-1>(1+χ)ln(1+χ).
设f(χ)在[0,2]上连续,在(0,2)内可导,且3f(0)=f(1)+2f(2),证明:存在ξ∈(0,2),使得f′(ξ)=0.
设f(χ)在[0,1]上连续,在(0,1)内可导,且∫01f(t)dt=0证明:存在ξ∈(0,1),使得f(ξ)=∫0ξf(t)dt.
设f(χ)在[0,1]上二阶可导,f(1)=1,且=1,证明:存在ξ∈(0,1),使得f〞(ξ)-2f′(ξ)+2=0.
设0<a<1,证明:方程arctanχ=aχ在(0,+∞)内有且仅有一个实根.
证明:当χ>0时,.
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
随机试题
李某于2018年10月27日向国家知识产权局提出了一件发明专利申请,该申请于2019年8月10日公开,于2020年5月12日被公告授予专利权。该专利权因李某未缴纳年费于2021年7月11日终止。针对该专利权提出的下列哪些无效宣告请求即使符合其他受理条件也不
亚太经济合作组织投资法制的特点是()
下列各项,不属于岩的病因病机的是
A.跨阈步态B.醉汉步态C.慌张步态D.剪刀样步态E.划圈样步态
圆盘锯的安全防护装置包括分料器、锯盘护罩、防护挡板和传动部位防护罩。()
建设项目业主在联合体或合作体的资格审查时,不仅要审查各个成员的资质、资格和能力等方面,还要审查其()。
(2016年、2014年)2013年4月9日,甲公司签发一张出票后定期付款的银行承兑汇票,付款期限为2个月,收款人为乙公司,金额为40万元。甲公司开户银行P银行承兑了该汇票。5月10日,丙公司作为保证人在票据上记载有关事项并签章,但未记载“被保证人名称”。
由于职业活动(工作或劳动)是人类最基本的实践活动,因此,在诸种道德中,职业道德处于主导地位。()
Ifyouhaveeverwonderedhowanelephantsmells,scientistshavetheanswer.ResearchershavediscoveredthatAfricanElephants
Man:Youlookdepressed.What’seatingyou?Woman:Ourdog.He’smissingthesethreeweeks.Man:Oh,Iknowhowyoufeel.There
最新回复
(
0
)