首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,B=P-1A*P,求P+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设矩阵A=,B=P-1A*P,求P+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
admin
2019-02-26
49
问题
设矩阵A=
,B=P
-1
A
*
P,求P+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为三阶单位矩阵。
选项
答案
设A的特征值为λ,对应特征向量为η,则有Aη=λη。由于|A|=7≠0,所以λ≠0。 又因A
*
A=|A|E,故有A
*
η=[*]。于是有 B(P
-1
η)=P
-1
A
*
P(P
-1
η)=[*](P
-1
η) (B+2E)P
-1
η=[*]P
-1
η 因此,[*]+2为B+2E的特征值,对应的特征向量为P
-1
η。 由于 |λE-A|=[*]=(λ-1)
2
(λ-7), 故A的特征值为λ
1
=λ
2
=1,λ
3
=7。 当λ
1
=λ
2
=1时,对应的线性无关的两个特征向量可取为η
1
=[*] 当λ
3
=7时,对应的一个特征向量可取为η
3
=[*] 由P
-1
= [*] 因此,B+2E的三个特征值分别为9,9,3。 对应于特征值9的全部特征向量为 k
1
P
-1
η
1
+k
2
P
-1
η
2
=k
1
[*],其中k
1
,k
2
是不全为零的任意常数; 对应于特征值3的全部特征向量为 k
3
P
-1
η
3
=k
3
[*],其中k
3
是不为零的任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/hh04777K
0
考研数学一
相关试题推荐
已知(X,Y)服从二维正态分布N(0,0;σ2,σ2;ρ),则随机变量X+Y与X-Y必()
设z=f(x,y)是由e2yz+x+y2+z=确定的函数,则=________·
设α=[1,0,1]T,A=ααT,n是正数,则|aE-An|=______
sinxcosxdx(自然数n或m为奇数)=______.
微分方程y’’+3y’+2y=e-x满足条件y(0)=1,y’(0)=1的特解为_________.
若随机变量X1,X2,…,Xn相互独立同分布于N(μ,22),则根据切比雪夫不等式得P{|-μ|≥2}≤_________·
双曲线绕z轴旋转而成的曲面的方程为()
(2010年)设P为椭球面S:x2+y2+z2一yz=1上的动点,若S在点P的切平面与xOy面垂直,求P点的轨迹C并计算曲面积分其中∑是椭球面S位于曲线C上方的部分。
设半径为R的球之球心位于以原点为中心、a为半径的定球面上(2a>R>0,a为常数).试确定R为何值时前者夹在定球面内部的表面积为最大,并求出此最大值.
设F(x)是f(x)的原函数,且当x≥0时有f(x)F(x)=sin22x,又F(0)=1,F(x)≥0,求f(x)。
随机试题
郑某等人多次预谋通过爆炸抢劫银行运钞车。为方便跟踪运钞车,郑某等人于2012年4月6日杀害一车主,将其面包车开走(事实一)。后郑某等人制作了爆炸装置,并多次开面包车跟踪某银行运钞车,了解运钞车到某储蓄所收款的情况。郑某等人摸清运钞车情况后,于同年6月8日将
设A是m×n的非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是()。
图示三铰支架上作用两个大小相等、转向相反的力偶m1和m2,其大小均为100kN·m,支架重力不计。支座B的反力RB的大小和方向为( )。
能反映一个组织系统中各项工作之间逻辑关系的组织工具是()
某连锁娱乐企业是增值税一般纳税人,主要经营室内游艺设施。2021年11月经营业务如下:(1)当月游艺收入价税合计636万元,其中门票收入为300万元、游戏机收入为336万元。当月通过税控系统实际开票价款为280万元。(2)当月以融资性售后回租形式融资,
1990年,我们党的十四大报告进一步系统地阐述了建设有中国特色社会主义理论的主要内容。( )
根据《合同法》规定,违反合同一方要承担违约责任,下列不属于承担违约责任方式的是()。
8个人比赛国际象棋,约定每两人之间都要比赛一局,胜者得2分,平局得1分,负的不得分。在进行了若干局比赛之后,发现每个人的分数都不一样。问最多还有几局比赛没比?()
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
Lightlevelsarecarefullycontrolledtofallwithinanacceptablelevelfor______readingconvenience.
最新回复
(
0
)