首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…,αn-1,β线性无关.
admin
2018-04-15
95
问题
n维列向量组α
1
,…,α
n-1
线性无关,且与非零向量β正交.证明:α
1
,…,α
n-1
,β线性无关.
选项
答案
令k
0
β+k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
与非零向量β正交及(β,k
0
β+k
1
α
1
+…+k
n-1
α
n-1
)=0得k
0
(β,β)=0,因为β为非零向量,所以(β,β)=|β|
2
>0,于是k
0
=0,故k
1
α
1
+…+k
n-1
α
n-1
=0,由α
1
,…,α
n-1
线性无关得k
1
=…
n-1
=0,于是α
1
,…,α
n-1
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/hiX4777K
0
考研数学三
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=________
设f,φ有二阶连续导数
设函数f(x)在(一∞,+∞)存在二阶导数,且f(x)=f(一x),当x<0时行f’(x)<0,f”(x)>0,则当x>0时,有()
求幂级数在区间(一1,1)内的和函数S(x).
袋中有n张卡片,分别记有号码1,2,…,n,从中有放回地抽取k张,以X表示所得号码之和,求EX,DX.
已知A是m×n矩阵,m<n.证明:AAT是对称阵,并且AAT正定的充要条件是r(A)=m.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型xTAx是正定二次型,x=Cy是坐标变换,证明二次型yTBy是正定二次型,其中B=CTAC.
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)2的矩阵是_______.
已知二次型f(x1,x2,x2)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
随机试题
怕冷、自汗、易感冒属于
肾上腺增大的原因有
男,30岁,体检中发现血尿,血压正常,不伴尿频、尿急、尿痛。腹无压痛,肾区无叩击痛。最可能的诊断是
男性,65岁,肝癌肝叶切除术后第1天,病人感腹痛、心慌、气促、出冷汗,血压12/8kPa,首先应考虑为
典型心绞痛不出现:
根据《旅行社投保旅行社责任保险暂行规定》,旅行社责任保险的保险期限为()。
______是衡量学校办学水平的关键指标。
有位教师在讲授完峻青的《秋色赋》后,将欧阳修的《秋色赋》和毛泽东的《沁园春.长沙》也一同发给学生,引导学生比较、思考和讨论,这种结课方法叫()。
微型电池已成为全球研究热点,三维微电池是微型电池的发展趋势。下列不属于三维微电池特点的是()。
下列描述正确的是( )。
最新回复
(
0
)