首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2020-03-10
59
问题
设A是m×n矩阵.证明: r(A)=1
存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“[*]”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n.记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “[*]”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量a
i
≠0,β的第j个分量b
j
≠0.则A的(i,j)位元素为a
i
b
j
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/hwD4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上具有连续导数,且f(0)+f(1)=0。证明
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设A=,A*为A的伴随矩阵,则(A*)-1=___________。
与矩阵A=可交换的矩阵为___________。
设α,β均为三维列向量,β是βT的转置矩阵,如果αβT=,则αTβ=___________。
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则()
随机试题
Footballisthemostpopularsport【21】thefallintheUnitedStates.Thegameoriginatedasa(an)【22】sportmorethanseventy-fiv
有关免疫介导性肾小球疾病的发病机制中,下列说法哪项是错误的
流产治疗恰当的是
在工程网络计划执行过程中,监理工程师检查实际进度时,只发现工作N的总时差由原计划的4d变为一2d,说明工作N的实际进度()。
学习者为了提高学习的效果和效率,有目的、有意识地制订有关学习过程的复杂的方案,这是______。
在教育过程中,甲教师对突发性事件做出迅速、恰当地处理,被称为“教育机智”,这反映了教师劳动()的特点。
(Thefirst)electriclamphadtwocarbonrods(fromwhich)vapor(served)toconductthecurrent(across)thegap.
Americansfinditdifficulttoengageinanyactivityforpurepleasure.Wehavetohaveahigheraim—apurpose—foreverymome
【B1】【B2】
NewYearintheUnitedStatesiscelebratedonJanuary1,thefirstdayoftheGregorianCalendar.Thisisafederal【B1】______i
最新回复
(
0
)