首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2020-03-10
82
问题
设A是m×n矩阵.证明: r(A)=1
存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“[*]”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n.记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “[*]”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量a
i
≠0,β的第j个分量b
j
≠0.则A的(i,j)位元素为a
i
b
j
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/hwD4777K
0
考研数学三
相关试题推荐
设f(x)在[0,π]上连续,证明。
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
已知向量组的秩为2,则t=_________。
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则()
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
与矩阵A=可交换的矩阵为___________。
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则()
随机试题
和平共处的五项原则的倡导国是()。
急性上呼吸道感染若证实为链球菌感染,或既往有风湿热、肾炎病史者,青霉素疗程应为10~14日。
瞳神紧小相当于西医学之:瞳神干缺相当于西医学之:
盆膈是指盆底的:
江某,女,68岁,今晨发现半身不遂,口舌歪斜,舌强不语,偏身麻木,头晕,舌质暗淡,舌苔薄白,脉弦滑。其选方为
强心苷中的糖基常见为()
根据我国现行宪法的规定,我国现行的行政区域说法正确的是:
Playistheprincipalbusinessofchildhood,andmoreandmoreinrecentyearsresearchhasshownthegreatimportanceofplayi
DearJim,Hello,IlearnaboutyoufrommyEnglish【M1】______teacher,MissFang.I’dliketoyourpenfriend,
Theneedforbirthcontrolmethodshasdevelopedfairly【B1】______,withthedesireamongmanywomentobeableto【B2】______when
最新回复
(
0
)