首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
设常数,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
admin
2019-01-15
68
问题
设常数
,证明方程f(x)=0在区间(0,+∞)内有且仅有两个实根。
选项
答案
在区间(0,+∞)内,方程f(x)=e
x
-ax
2
=0,其等价于[*],可讨论φ(x)=0在(0,+∞)内的实根个数。 由[*],令φ
’
(x)=0,得驻点x=2,列表如下: [*] 则当x=2时,φ(x)取得极小值[*],已知[*],因此φ(2)<0。显然[*],[*],所以φ(x)=0在(0,2)和(2,+∞)上分别有且仅有一个实根,因此φ(x)在(0,+∞)内有且仅有两个实根,即f(x)在(0,+∞)上有且仅有两个实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/obP4777K
0
考研数学三
相关试题推荐
(97年)若f(-χ)=f(χ),(-∞<χ<+∞),在(-∞,0)内f′(χ)>0,且f〞(χ)<0,则在(0,+∞)内
(07年)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fx(χ),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX|Y(χ|y)为【】
(91年)设A为n阶可逆矩阵,λ是A的一个特征根,则A的伴随矩阵A*的特征值之一是【】
(96年)设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.一周五个工作日,若无故障,可获利润10万元;发生一次故障仍可获利润5万元;若发生两次故障,获利润0元;若发生三次或三次以上故障就要亏损2万元.求一周内的利润期望.
(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.
(15年)设D={(χ,y)|χ2+y2≤2χ,χ2+y2≤2y},函数f(χ,y)在D上连续,则f(χ,y)dχdy=【】
(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n).记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bχ=0的基础解系.
设函数f(x)连续.(1)求初值问题的解y(x),其中a是正常数.(2)若|f(x)|≤k(k为常数),证明:当x≥0时,有|y(x)|≤(1一e—ax).
随机试题
扩张型心肌病与缺血型心肌病,其临床表现相同点
可破坏胃黏膜屏障的药物是
2016年1月,某药厂生产的某注射液因热原要求不合格,导致了广东省境内出现了28例药品不良反应事件聚集性报告,患者用药后的反应表现为寒战、头晕、发热、胸闷等。经广东食品药品检验所检验,该批药品热原项目检查不合格。热原的致热活性中心是()。
欧陆国家的刑法学说中通常认为的犯罪特征包括:
无法显示风险问题的损失值和损失发生的概率的风险识别方法是()。
在破产重整过程中,应该促进债务人尽快进入破产程序。()
我们可以沉溺于积极的情绪、思想和行为,也可以沉溺于消极的情绪、思想和行为。沉溺于积极情绪的最好的例子是恋爱,快乐激发出对恋人的积极的想象、喜悦的思想和爱的行为。因为把对方想象得很好,所以激发了爱;因为喜悦的思想,所以激发了爱;因为你爱他(她),所以他(她)
EconomicsisanimportantcomponentofthecoreMBAcurriculumbecauseeconomicprinciplesarebehindalmostallmanagerialacti
Since2007,theAmericanPsychologicalAssociation(APA)hasconductedasurveyofdifferentaspectsofstressinAmerica.This
Overahundredyearsago,CharlesDickensshockedmanyofhisreaderswhenhedescribedtheconditionsunderwhichyoungchildre
最新回复
(
0
)