首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2019-01-19
102
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,A选项正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此B选项是错误的。
C选项是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知D选项也是正确的。
综上可知,本题应选B。
转载请注明原文地址:https://kaotiyun.com/show/PbP4777K
0
考研数学三
相关试题推荐
(98年)设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1一2X2)2+b(3X3-4X4)2.则当a=_______,b=_______时,统计量X服从χ2分布,其自由度为_______.
(13年)设随机变量X和Y相互独立,且X和Y的概率分布分别为则P{X+Y=2}=【】
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
(15年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,,其中E为3阶单位矩阵,则行列式|B|=_______.
(00年)设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Aχ=0和(Ⅱ):ATAχ=0,必有【】
(96年)设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作.一周五个工作日,若无故障,可获利润10万元;发生一次故障仍可获利润5万元;若发生两次故障,获利润0元;若发生三次或三次以上故障就要亏损2万元.求一周内的利润期望.
(03年)设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-ααT,B=E+aaT,其中A的逆矩阵为B,则a=_______.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
随机试题
“中国起源论”的代表人物有()
在行政赔偿案中,经复议维持的案件,赔偿义务机关是()
TCP/IP是Internet的基本通信协议,由四层组成,它们是应用层、传输层以及________。
患者男性,36岁。反复发作上腹部疼痛伴呕吐2个月,呕吐物为宿食,呕吐后症状减轻,近1周症状加重而入院。体格检查:消瘦,轻度水肿,上腹部正中有轻压痛,有振水音。最重要的医疗诊断是
二妙散的功用是()
村民甲(18周岁)路过村民乙家门口时,用一块石头向乙家所养且卧在乙家门口的狗打去,该狗立即扑向甲,甲因跑得快未被狗咬,狗咬伤了甲旁边的行人丙。丙因躲避,将路边丁叫卖的西瓜踩碎3个。丙因治伤支付医药费80元。丁的3个西瓜价值16元。对丙、丁的损失应由谁赔偿?
总监理工程师变更时,应经项目法人同意,并通知()。
下列各项中,符合《企业内部控制应用指引第15号——全面预算》规定的是()。
2013年5月24日,中共中央政治局就大力推进生态文明建设进行第六次集体学习。中共中央总书记习近平在主持学习时强调,生态环境保护是功在当代、利在千秋的事业。要清醒认识保护生态环境、治理环境污染的紧迫性和艰巨性.清醒认识加强生态文明建设的重要性和必要性,以对
Inourculture,thesourcesofwhatwecallasenseof“mastery”--feelingimportantandworthwhile--andthesourcesofwhatwec
最新回复
(
0
)