首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
设α1,α2,…,αs均为n维向量,下列结论中不正确的是( )
admin
2019-01-19
100
问题
设α
1
,α
2
,…,α
s
均为n维向量,下列结论中不正确的是( )
选项
A、若对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,则α
1
,α
2
,…,α
s
线性无关。
B、若α
1
,α
2
,…,α
s
线性相关,则对于任意一组不全为零的数k
1
,k
2
,…,k
s
,都有k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0。
C、α
1
,α
2
,…,α
s
线性无关的充分必要条件是此向量组的秩为s。
D、α
1
,α
2
,…,α
s
线性无关的必要条件是其中任意两个向量线性无关。
答案
B
解析
对于选项A,因为齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0只有零解,故α
1
,α
2
,…,α
s
线性无关,A选项正确。
对于选项B,由α
1
,α
2
,…,α
s
线性相关知,齐次线性方程组x
1
α
1
+x
2
α
2
+…+x
s
α
s
=0存在非零解,但该方程组存在非零解,并不意味着任意一组不全为零的数均是它的解,因此B选项是错误的。
C选项是教材中的定理。
由“无关组减向量仍无关”(线性无关的向量组其任意部分组均线性无关)可知D选项也是正确的。
综上可知,本题应选B。
转载请注明原文地址:https://kaotiyun.com/show/PbP4777K
0
考研数学三
相关试题推荐
(04年)设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,和Y1,Y2,…,分别是来自总体X和Y的简单随机样本,则_______.
(10年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(15年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,,其中E为3阶单位矩阵,则行列式|B|=_______.
(93年)n阶方阵A具有n个不同的特征值是A与对角阵相似的【】
(87年)已知随机变量X的概率密度为求随机变量Y=的数学期望E(Y).
(16年)设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z).
(12年)设A为3阶矩阵,P为3阶可逆矩阵,且P-1AP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=【】
(09年)设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为【】
(01年)设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n),二次型f(χ1,χ2,…,χn)=.(1)记X=(χ1,χ2,…,χn)T,把f(χ1,χ2,…χn)写成矩阵形式,并证
随机试题
A.IgGB.IgMC.IgAD.IgDE.IgE可以旁路途径激活补体,并参与黏膜局部免疫的抗体是
A.结缔组织病B.支气管肺炎C.肺炎链球菌肺炎D.布氏杆菌病E.急性白血病发热伴皮肤黏膜出血多见于
下列选项中,不属于艾滋病口腔表征的是
在电力系统分析和计算中,功率、电压和阻抗一般分别是指()。
加强党内监督意义重大,对此表述有误的是()。
根据《中华人民共和国立法法》的规定,基层群众自治制度属于地方性法规可以规定的事项。()
一位贫穷的农民喜欢这样教导他的孩子们:“在这个世界上,你不是富就是穷,你不是诚实就是不诚实。由于所有贫穷的农民都是诚实的,所以,每个富裕的农民都是不诚实的。”上述论证以哪项为假设,这位农民的结论能合乎逻辑地推导出来?()
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解。求a的值;
WhatadvicedodoctorsgiveaboutvitaminC?DoctorsrecommendvitaminCto______.Whendothedoctorssuggestyoushould
Nowadays,somethinghasgoneterriblywrongwithouronce-proudAmericanwayoflife.Ithashappenedintheareaof【C1】______A
最新回复
(
0
)