首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是_________。
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是_________。
admin
2019-01-19
81
问题
向量组α
1
=(1,一2,0,3)
T
,α
2
=(2,一5,一3,6)
T
,α
3
=(0,1,3,0)
T
,α
4
=(2,一1,4,7)
T
的一个极大线性无关组是_________。
选项
答案
α
1
,α
2
,α
4
解析
用已知向量组组成一个矩阵,对矩阵作初等行变换,则有
α
1
,α
2
,α
3
,α
4
因为矩阵中有三个非零行,所以向量组的秩为3,又因为非零行的第一个不等于零的数分别在1,2,4列,所以α
1
,α
2
,α
4
是向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组。
转载请注明原文地址:https://kaotiyun.com/show/GbP4777K
0
考研数学三
相关试题推荐
(93年)n阶方阵A具有n个不同的特征值是A与对角阵相似的【】
(15年)设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0}=_______.
(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_______.
(08年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
(02年)设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(89年)设A为n阶方阵且|A|=0,则【】
(07年)设矩阵A=,则A3的秩为_______.
(08年)设A=则在实数域上与A合同的矩阵为【】
(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】
(02年)设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是【】
随机试题
班主任工作的重点是()
丸剂的特点是
解热镇痛抗炎药的抗炎作用机制是抑制
慢性非特异性唇炎的临床表现为
股票价格可分为()。
以下设备中,只能作为输出设备的是()。
某公司从瑞典进口一批植物种子(纸箱包装),进境口岸为天津,货物目的的地方西安,入境报检时无须提供的单据是( )
下列关于财政平衡的说法,正确的有()。
与上年同期相比,2010年6月汽车零售额同比增幅:
A、Shewantstoknowwhothestudentsare.B、Shewantstomeetthepresident.C、She’snoteagertogreetthepresident.D、She’ss
最新回复
(
0
)