首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是_________。
向量组α1=(1,一2,0,3)T,α2=(2,一5,一3,6)T,α3=(0,1,3,0)T,α4=(2,一1,4,7)T的一个极大线性无关组是_________。
admin
2019-01-19
96
问题
向量组α
1
=(1,一2,0,3)
T
,α
2
=(2,一5,一3,6)
T
,α
3
=(0,1,3,0)
T
,α
4
=(2,一1,4,7)
T
的一个极大线性无关组是_________。
选项
答案
α
1
,α
2
,α
4
解析
用已知向量组组成一个矩阵,对矩阵作初等行变换,则有
α
1
,α
2
,α
3
,α
4
因为矩阵中有三个非零行,所以向量组的秩为3,又因为非零行的第一个不等于零的数分别在1,2,4列,所以α
1
,α
2
,α
4
是向量组α
1
,α
2
,α
3
,α
4
的一个极大线性无关组。
转载请注明原文地址:https://kaotiyun.com/show/GbP4777K
0
考研数学三
相关试题推荐
(93年)n阶方阵A具有n个不同的特征值是A与对角阵相似的【】
(94年)设有线性方程组(1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
(03年)设n维向量α=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E-ααT,B=E+aaT,其中A的逆矩阵为B,则a=_______.
(07年)设矩阵A=,则A3的秩为_______.
(09年)袋中有1个红球、2个黑球与3个白球.现有放回地从袋中取两次,每次取一个球.以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数.(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布.
设齐次线性方程组Am×nχ=0的解全是方程b1χ1+b2χ2+…+bnχn=0的解,其中χ=(χ1,χ2,…,χn)T.证明:向量b=(b1,b2,…,bn)可由A的行向量组线性表出.
设A为m×n矩阵.证明:对任意m维列向量b,非齐次线性方程组Aχ=b恒有解的充分必要条件是r(A)=m.
设有齐次线性方程组Aχ=0和Bχ=0,其中A、B均为m×n矩阵.现有4个命题:【】①若Aχ=0的解均是Bχ=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Aχ=0的解均是Bχ=0的解;③若Aχ=0与B
设A、B都是n阶方阵,且A2=E,B2=E,|A|+|B|=0,证明:|A+B|=0.
随机试题
为什么说坚持党的领导是社会主义现代化建设的根本保证?
软件开发的螺旋模型综合了瀑布模型和演化模型的优点,还增加了________________。
以下哪项符合肝郁脾虚证的大便的特点
影响吸收速度,对疗效也有影响,原因可能是
A.阿片制剂B.硫酸镁C.地芬诺酯D.甘油E.番泻叶
药材粉碎前应充分干燥,一般控制水分为
地面水环境影响评价分级判据的“污水水质的复杂程度”中的“复杂”是指()。
【2012.江西】中小学德育最重要和最基本的教育内容是()。
研究人员把受试者分成两组:A组做十分钟自己的事情,但不从事会导致说谎行为的事;B组被要求偷拿考卷,并且在测试时说谎。之后,研究人员让受试者戴上特制电极,以记录被询问的眨眼频率。结果发现,A组眨眼频率会微微上升,但B组的眨眼频率先是下降,然后大幅上升至一般频
随着折现率的提高,未来某一款项的现值将逐渐降低。
最新回复
(
0
)