首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意. 记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意. 记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
admin
2017-11-23
59
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
,c任意.
记B=(α
3
,α
2
,α
1
,β一α
4
).求方程组Bx=α
1
一α
2
的通解.
选项
答案
首先从AX=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
可得到下列讯息: ①Ax=0的基础解系包含1个解,即 4一r(A)=1, 得r(A)=3.即 r(α
1
,α
2
,α
3
,α
4
)=3. ②(1,2,2,1)
T
是Ax=β解,即 α
1
+2α
2
+2α
3
+α
4
=β. ③(1,一2,4,0)
T
是Ax=0解,即 α
1
—2α
2
+4α
3
=0. α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,一1,1,0)
T
=α
1
一α
2
,即 (0,一1,1,0)
T
是Bx=α
1
一α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
), 于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bx=0的基础解系包含解的个数为4一r(B)=2个. α
1
—2α
2
+4α
3
=0 说明(4,一2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
) 容易得到B(一2,一2,一1,1)
T
=0,说明(一2,一2,一1,1)
T
也是Bx=0的解.于是(4,一2, 1,0)
T
和(一2,一2,一1,1)
T
构成Bx=0的基础解系. Bx=α
1
一α
2
的通解为: (0,一1,1,0)
T
+c
1
(4,一2,1,0)
T
+c
2
(一2,一2,一1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/hyr4777K
0
考研数学一
相关试题推荐
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式.
曲线的曲率及曲率的最大值分别为__________.
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:在(a,b)内至少存在一点ξ,使
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
设随机变量X,Y独立同分布,且设随机变量U=max{X,Y),V=min{X,Y).求二维随机变量(U,V)的联合分布;
设随机变量X满足|X|≤1,且,在{一1<X<1)发生的情况下,X在(一1,1)内任一子区间上的条件概率与该子区间长度成正比.求X的分布函数;
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ2的无偏估计量.
求幂级数的和函数.
设f(x)在x=0的某邻域内二阶连续可导,且.证明:级数绝对收敛.
求下面线性方程组的解空间的维数:并问ξ1=[9,一1,2,一1,1]T是否属于该解空间.
随机试题
在美国,当政府财政出现临时性资金短缺时,财政部不定期地发行一定数量的国库券,这种国库券被称为
需与良性前列腺增生进行鉴别诊断的疾病是()
护士化妆的风格不包括
以下()情况属于试验检测设备未按规定检定校准的。
已满14周岁不满18周岁的人有违法行为的,从轻或者减轻行政处罚,这说明了行政处罚是()。
使用账务处理软件时,正确的工作顺序是()。
A、 B、 C、 D、 A题干每个图形都由4个小图形组成,且题干所有的小图形形态各异,互不相同,这就是题干图形所表现出的特征,下一个图形也应满足这一特征。只有A的四个小图形互不相同,且与题干所有小图形无一相同
1949年新中国的成立.标志着我国新民主主义革命阶段的基本结束和社会主义革命阶段的开始。这一时期,我国社会的性质是()
计算机软件是包括()的完整集合。
"OrganicArchitecture"Oneofthemoststrikingpersonalitiesinthedevelopmentofearly-twentieth-centuryarchitecturewas
最新回复
(
0
)