首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
设α1,α2,α3,α4是四维非零列向量,A=(α1,α2,α3,α4),A*为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0基础解系为( ).
admin
2019-08-27
61
问题
设α
1
,α
2
,α
3
,α
4
是四维非零列向量,A=(α
1
,α
2
,α
3
,α
4
),A
*
为A的伴随矩阵,又知方程组Ax=0的基础解系为(1,0,2,0)
T
,则方程组A
*
x=0基础解系为( ).
选项
A、
B、
C、
D、
答案
C
解析
【思路探索】首先确定A的秩,进而确定A
*
的秩;利用A与A
*
的关系及已知条件即可判别.
由Ax=0的基础解系仅含有一个解向量知,R(A)=3,从而R(A
*
)=1,于是方程组A
*
x=0的基础解系中含有3个解向量.
又A
*
A=A
*
(α
1
,α
2
,α
3
,α
4
)=|A|E=O,所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
x=0的解.
因为(1,0,2,0)
T
是Ax=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关.从而,向量组α
1
,α
2
,α
3
与向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D)选项.
事实上,由α
1
+2α
3
=0,得α
1
=0x
2
-2α
3
+0α
4
,即α
1
可由α
2
,α
3
,α
4
线性表示,又R(α
1
,α
2
,α
3
,α
4
)=3,所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
x=0的一个基础解系.
故应选(C).
转载请注明原文地址:https://kaotiyun.com/show/i2A4777K
0
考研数学二
相关试题推荐
过第一象限中椭圆上的点(ξ,η)作该椭圆的切线,使该切线与两坐标轴的正向围成的三角形的面积为最小,求点(ξ,η)的坐标及该三角形的面积.
()
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在cE(0,1),使得f(C)=1-2c;
设方阵A满足条件ATA=E,其中AT是A的转置矩阵,E为单位阵.试证明A的实特征向量所对应的特征值的绝对值等于1.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
设数列则当n→∞时,xn是
设f(χ)=,则f(χ)的间断点为χ=_______.
求下列极限:
设z=f(x2+y2+z2,xyz)且f一阶连续可偏导,则=_______
随机试题
在经常账户中,赔偿和无偿捐赠属于哪个项目
Lifeisaseriesofproblems.Dowewanttomoanaboutthemorsolvethem?Dowewanttoteachourchildrentosolvethem?D
补体结合试验的叙述,错误的是
玉屏风散与牡蛎散相同的功用是()
公证制度是司法制度重要组成部分,设立公证机构、担任公证员具有严格的条件及程序。关于公证机构和公证员,下列哪一选项是正确的?(2017年卷一50题)
英国统计学家Karl,Pearson提出了一个测定两指标变量线性相关的计算公式,通常称为积距相关系数,其公式为()。
义务教育
HTML中的注释是用______来标记的。A.<!---->B./**/C.//D."
令牌环协议是一种
PabloPicassowasthemostinfluentialandsuccessfulartistofthe20thcentury.Painting,sculpture,graphicart,andceramics
最新回复
(
0
)