首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内连续,且满足=-1,则x=0
设函数f(x)在x=0的某邻域内连续,且满足=-1,则x=0
admin
2019-02-01
35
问题
设函数f(x)在x=0的某邻域内连续,且满足
=-1,则x=0
选项
A、是f(x)的驻点,且为极大值点.
B、是f(x)的驻点,且为极小值点.
C、是f(x)的驻点,但不是极值点.
D、不是f(x)的驻点.
答案
C
解析
本题应先从x=0是否为驻点入手,即求f’(0)是否为0;若是,再判断是否为极值点.
由
=0,从而f(0)=0,f’(0)=
=-1×0=0可知x=0是f(x)的驻点.再由极限的局部保号性还知,在x=0的某去心邻域内
<0;由于1-cosx>0,故在此邻域内,当x<0时f(x)>0=f(0),而当x>0时f(x)<0=f(0),可见x=0不是极值点,故选C.
转载请注明原文地址:https://kaotiyun.com/show/juj4777K
0
考研数学二
相关试题推荐
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.
设f在点(a,b)处的偏导数存在,求.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设二阶常系数线性微分方程,y’’+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
随机试题
精密孔的挤光和滚压工艺中,拉挤适用于长径比L/D>( )的深孔加工。
关于骨骼肌兴奋与收缩的描述,正确的是
最可能的诊断为根据体格检查确定病变节段为
男性,20岁,受凉后突发寒战、高热3天,右下胸痛,咳铁锈色痰,胸片发现右下肺大片阴影,最有可能的诊断是
最有效缓解心绞痛的药物是()
请根据下列所提供的销售合同主要条款,修改信用证条款的主要内容,再根据修改后的信用证条款审核并修改集装箱货物托运单。(注意:对信用证和托运单的内容进行审核,将错误的项目划掉,并填写上正确的内容。)1.有关销售合同的主要条款合同号:CH20
()属于不作为义务。[2007年11月二级真题]
预制板连接要牢靠,预制板搁置在砖墙上时,支承长度不应小于()。
近日,一名小学二年级学生《我长大后想当……》的作文火遍朋友圈,引起人们广泛关注。其在作文中写道,自己长大了想当县长,这样就可以让警察爸爸不再加班,也让警察叔叔多时间陪陪家人。纯真的语言引来网友的纷纷围观,也让警察及其家属产生了共鸣并且很感动。对此,你怎么看
Accordingtothetalk,whatisthepricesystemprimarilyrelatedto?
最新回复
(
0
)