首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
admin
2019-01-26
59
问题
求函数f(x,y)=x
2
+xy+y
2
在闭区域D={(x,y)|x
2
+y
2
≤1}上的最大值和最小值。
选项
答案
由于所给的区域D是闭区域,故先考虑函数f(x,y)在区域D内部{(x,y)|x
2
+y
2
<1)的极值,这属于无条件极值,解线性方程组 [*] 所以 x=0,y=0。 在(0,0)点,有 f
xx
"=2>0,f
xy
"=1,f
yy
"=2, 所以 f
xx
"f
yy
"-(f
xy
")
2
>0, 所以(0,0)点是函数的极小值点,极小值为f(0,0)=0。 然后考虑函数f(x,y)在区域D边界{(x,y)|x
2
+y
2
=1)的极值,这属于条件极值,构造如下的拉格朗日函数 L(x,y,λ)=x
2
+xy+y
2
-λ(x
2
+y
2
-1), 对上式求偏导得如下方程组 [*] 将上述方程组化简得 4λ
2
-8λ+3=0. 解得 [*] 当[*]时,x=-y,[*]当[*]时,x=y,[*] 因为连续函数在闭区间上必可取得最大值和最小值,所以f(x,y)在边界上的最大值为[*]最小值为[*] 综上所述,f(x,y)在闭区域D上的最大值为[*]最小值为0。
解析
转载请注明原文地址:https://kaotiyun.com/show/i5j4777K
0
考研数学二
相关试题推荐
(2015年)设函数f(χ)=χ+aln(1+χ)+bχsinχ,g(χ)=kχ3.若f(χ)与g(χ)在χ→0时是等价无穷小,求a,b,k的值.
(2013年)设函数f(χ)=lnχ+.(Ⅰ)求f(χ)的最小值;(Ⅱ)设数列{χn}满足lnχn+<1.证明存在,并求此极限.
求极限:.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
设n阶(n≥3)矩阵,A=,若矩阵A的秩为n—1,则a必为()
已知问λ取何值时,(1)β可由α1,α2,α3线性表出,且表达式唯一;(2)β可由α1,α2,α3线性表出,但表达式不唯一;(3)β不能由α1,α2,α3线性表出.
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=aijxixj在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设A是n阶正定矩阵,证明:|E+A|>1.
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
随机试题
下列哪个选项不是列管换热器的主要构成部件?()
患儿,男性,8个月,舌系带溃烂长肿物1个月,影响进食与舌的活动,求治。检查:下乳切牙萌出,边缘锐利,舌系带处可见1.0cm×0.8cm大小的溃疡,溃疡增殖,边缘高起外翻,表面有灰白色假膜,触较韧。此患儿可能诊断为
定期寿险保单提供的死亡给付通常分为水平式和( ),并连同一些增加死亡给付条款一起销售(附加条款是指附加在人寿或健康保险保单上的协议和条款,旨在增加保险利益或排除某些损失)。
三个自然数分别是一位数、两位数和三位数,其积为3930,其和最小为多少?
第二次科技革命的发生,对资本主义生产关系产生了.深远的影响,它使资本主义制度最终确立起来。()
某模块内涉及多个功能,这些功能必须以特定的次序执行,则该模块的内聚类型为()内聚。
ANSWERPHONEMESSAGE(Questions5-8)LeavingaMessageFrom:Roger【L5】______withJ.C.HendersonLtd.To:
Istheshirtonthebed______?
A、readingpassagesB、theverbalpartC、thequantitativepartD、writtenskillsD
A、Themonitorsmaydoharmtostudents’study.B、Theirchildrencan’tactfreelybecauseofthemonitors.C、Theuseofthemonit
最新回复
(
0
)