首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
admin
2019-01-26
57
问题
求函数f(x,y)=x
2
+xy+y
2
在闭区域D={(x,y)|x
2
+y
2
≤1}上的最大值和最小值。
选项
答案
由于所给的区域D是闭区域,故先考虑函数f(x,y)在区域D内部{(x,y)|x
2
+y
2
<1)的极值,这属于无条件极值,解线性方程组 [*] 所以 x=0,y=0。 在(0,0)点,有 f
xx
"=2>0,f
xy
"=1,f
yy
"=2, 所以 f
xx
"f
yy
"-(f
xy
")
2
>0, 所以(0,0)点是函数的极小值点,极小值为f(0,0)=0。 然后考虑函数f(x,y)在区域D边界{(x,y)|x
2
+y
2
=1)的极值,这属于条件极值,构造如下的拉格朗日函数 L(x,y,λ)=x
2
+xy+y
2
-λ(x
2
+y
2
-1), 对上式求偏导得如下方程组 [*] 将上述方程组化简得 4λ
2
-8λ+3=0. 解得 [*] 当[*]时,x=-y,[*]当[*]时,x=y,[*] 因为连续函数在闭区间上必可取得最大值和最小值,所以f(x,y)在边界上的最大值为[*]最小值为[*] 综上所述,f(x,y)在闭区域D上的最大值为[*]最小值为0。
解析
转载请注明原文地址:https://kaotiyun.com/show/i5j4777K
0
考研数学二
相关试题推荐
(1992年)求曲线y=的一条切线l,使该曲线与切线l及直线χ=0,χ=2所围成平面图形面积最小.
(1991年)设函数f(χ)在(-∞,+∞)内满足f(χ)=f(χ-π)+sinχ,且f(χ)=χ,χ∈[0,π),计算∫π3πf(χ)dχ.
(1993年)已知曲线y=f(χ)过点(0,-),且其上任一点(χ,y)处的切线斜率为χln(1+χ2),则f(χ)=_______.
(1989年)设两函数f(χ)和g(χ)都在χ=a处取得极大值,则函数F(χ)=f(χ)g(χ)在χ=a处【】
设函数y=f(x)由参数方程(t>一1)所确定,其中φ(t)具有二阶导数,且已知=3(1+t)。
求函数的导数:y=(a>0).
设A是n×n矩阵,X是任意的n维列向量,B是任意的n阶方阵,则下列说法错误的是()
设A,B是n阶矩阵,则下列结论正确的是()
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有命题①(I)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(I)的解;③(I)的解不一定是(Ⅱ)的解;④(Ⅱ)的解不一定是(I)的解.其中,正确的
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
随机试题
(2020年济南联考)认为人的心灵就像一块白板,教育者可以随心所欲地涂写与塑造的教育家是()
A.靶面B.阳极柄C.阳极帽D.阳极头E.阳极体承受电子轰击产生X线的是
防直击雷的避雷带网格尺寸小于10m×10m应属于防雷建筑物()类。
()是衡量社区文明程度的重要标志,是邻里互助、自我服务的重要体现。
Anystudentwho______hishomeworkisunlikelytopasstheexamination.
在考生文件夹下已有xuesheng和chengji两个表,现请在考生文件夹下完成以下简单应用:(1)利用查询设计器创建查询,根据xuesheng和chenNi表统计出男、女生在“英语”课程上各自的“最高分”、“最低分”和“平均分”。查询结果包含“
某人编写了下面的程序,希望能把Text1文本框中的内容写到out.txt文件中:PrivateSubCommand1_Click() Open"out.txt"ForOutputAs#2 Print"Text1" Close
在下列字符中,其ASCII码值最大的一个是()。
LoweringtheRiskofHeartDiseaseLikemillionsofotherAmericans,Icomefromafamilywithahistoryofheartdisease.My
Itcanbetemptingtomakeahastydecisionwhenakilleropportunitycomesalongorthethoughtofspendinganotherdayon
最新回复
(
0
)