首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
admin
2017-01-21
53
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
x=0有解向量α,且A
k—1
α≠0。证明:向量组α,Aα,…,A
k—1
α是线性无关的。
选项
答案
设有常数λ
0
,λ
1
,…,λ
k—1
,使得 λ
0
α+λ
1
Aα+…+λ
k—1
A
k—1
α=0, 则有 A
k—1
(λ
0
α+λ
1
Aα+…+λ
k—1
A
k—1
α)=0, 从而得到λ
0
A
k—1
α=0.由题设A
k—1
a≠0,所以λ
0
=0。 类似地可以证明λ
1
=λ
2
=…=λ
k—1
=0,因此向量组α,Aα,…,A
k—1
α是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/i9H4777K
0
考研数学三
相关试题推荐
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=O和(Ⅱ)ATAX=0必有().
设A是m×n阶矩阵,下列命题正确的是().
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
已知且AX+X+B+BA=0,求X2006。
随机试题
φ139.7mm以上套管,可采用()方式,并配合以大排量。
下列哪两个声音叠加后,声压级为60dB?
(2006年)已知α=i+aj-3k,β=ai一3j+6k,γ=-2i+2j+6k,若α,β,γ共面,则a等于()。
安装工程保险试车考核期以不超过()为限。
市盈率是反映企业()的指标。
下列关于系统脱敏的描述中,正确的有()。
文字:剧本:话剧
设随机变量X的密度函数为f(x)=.(1)求常数A;(2)求X在(0,)内的概率;(3)求X的分布函数F(x).
Duringrecentyearswehaveheardmuchabout"race":howthisracedoescertainthingsandthatracebelievescertainthingsand
A、Themanwassorryforhismistake.B、Thewomanlostherreport.C、Thereportwaslost.D、Thereportwaskeptonthecomputer.
最新回复
(
0
)