首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
admin
2017-12-29
62
问题
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。
(Ⅰ)写出f(x)在[—2,0)上的表达式;
(Ⅱ)问k为何值时,f(x)在x=0处可导。
选项
答案
(Ⅰ)当—2≤x<0,即0≤x+2<2时,则 f(x)=kf(x+2)=k(x+2)[(x+2)
2
—4]=kx(x+2)(x+4), 所以f(x)在[—2,0)上的表达式为 f(x)=kx(x+2)(x+4)。 (Ⅱ)由题设知f(0)=0。 [*] 令f
—
’
(0)=f
+
’
(0),得k=[*],即当k=[*]时,f(x)在x=0处可导。
解析
转载请注明原文地址:https://kaotiyun.com/show/iQX4777K
0
考研数学三
相关试题推荐
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
微分方程=0的通解是()
设函数f(x),g(x)在[a,b]上连续且单调增,证明:∫abf(x)dx∫abg(x)dx≤(b一a)∫abf(x)g(x)dx.
设y=y(x)是由sinxy=确定的隐函数,求y’(0)和y"(0)的值.
设X1,X2,…,Xn,…是独立同分布的随机变量序列,E(Xi)=μ,D(Xi)=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设区域D1为以(0,0),(1,1),为顶点的四边形,D2为以为顶点的三角形,而D由D,与D:合并而成。随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(x)、fY(y)。
n个小球和n个盒子均编号1,2,…,n,将n个小球随机地投入n个盒中去,每盒投1个球。记X为小球编号与所投之盒子编号相符的个数,求E(X)。
下列函数中在点x=0处可微的是().
求幂级数的收敛区间与和函数f(x).
随机试题
社会基本矛盾是()。
诗歌《雨巷》十分注重音乐感,具体的表现有()
阅读下面语段,回答问题:【端正好】碧云天,黄花地,西风紧,北雁南飞。晓来谁染霜林醉?总是离人泪。【滚绣球】恨相见得迟,怨归去得疾。柳丝长玉骢难系,恨不得倩疏林挂住斜晖。马儿迍迍的行,车儿快快的随,却告了相思回避,破题儿又早别离。听得道一
患者,男,支气管扩张入院治疗,咳嗽、咳痰重,下列咳嗽、咳痰护理措施中,错误的是()
()装载时,应确切掌握集装箱内部尺寸与货物外部尺寸,计算好最佳的装载件数。
某小学二年级有3个学生有厌学情绪,他们的班主任找来学校社会工作者席琳,希望她能帮助这3个孩子重拾学习的兴趣与自信心。席琳为这3个孩子提供的社会工作服务已进入结束阶段,这时社会工作者席琳的任务是()
教育目的的层次包括()
人类面临移植组织、器官短缺的实际困难。转基因动物的问世给人类带来福音。科学家们首选的利用转基因技术为人类提供异种器官移植供体的动物是()。
下列选项中,应当以单位犯罪处罚的有()。(2008年多选24)
Itisnotunusualtodayforoldpeopletospoiltheirgrandchildrenwithtoysandsweetsandto【C1】______totheiraggressivedem
最新回复
(
0
)