首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。 (Ⅰ)写出f(x)在[—2,0)上的表达式; (Ⅱ)问k为何值时,f(x)在x=0处可导。
admin
2017-12-29
83
问题
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x
2
—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。
(Ⅰ)写出f(x)在[—2,0)上的表达式;
(Ⅱ)问k为何值时,f(x)在x=0处可导。
选项
答案
(Ⅰ)当—2≤x<0,即0≤x+2<2时,则 f(x)=kf(x+2)=k(x+2)[(x+2)
2
—4]=kx(x+2)(x+4), 所以f(x)在[—2,0)上的表达式为 f(x)=kx(x+2)(x+4)。 (Ⅱ)由题设知f(0)=0。 [*] 令f
—
’
(0)=f
+
’
(0),得k=[*],即当k=[*]时,f(x)在x=0处可导。
解析
转载请注明原文地址:https://kaotiyun.com/show/iQX4777K
0
考研数学三
相关试题推荐
F(x)=∫-1xf(t)dt,则()
设f(x)=将f(x)展开为x的幂级数;
微分方程的通解是________.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β1=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设,B是3阶非零矩阵,且AB=0,则Ax=0的通解是________.
求下列函数的导数:设f(t)具有二阶导数,=x2,求f(f’(x)),(f(f(x)))’.
求下列函数的导数:y=ef(x).f(ex);
求极限
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解。(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A;(Ⅲ)求A及,其中E为3阶单位矩阵。
随机试题
宫体诗的创作特点。
神经细胞动作电位的幅度接近于
下列蒽醌类化合物中,酸性强弱顺序是()
A.颅内压增高B.椎一基底动脉供血不足C.青光眼D.蛛网膜下腔出血E.神经功能性头痛头痛伴脑膜刺激征者
拔除上颌第一磨牙腭侧断根时,牙根阻力突然消失,拔牙窝空虚,捏鼻鼓,气时拔牙窝无气体溢出,可能为
上消化道出血最常见的原因是()
刘某是甲有限责任公司的董事长兼总经理。任职期间,多次利用职务之便,指示公司会计将资金借贷给一家主要由刘某的儿子投资设立的乙公司。对此,持有公司股权0.5%的股东王某认为甲公司应该起诉乙公司还款,但公司不可能起诉,王某便自行直接向法院对乙公司提起股东代表诉讼
黑龙江五大连池是中国最大的火山堰塞湖。()
1905年至1907年间,围绕中国究竟是采用革命手段还是改良方式这个问题,革命派与改良派分别以《民报》《新民丛报》为主要舆论阵地,展开了一场大论战。这场论战具有重大的意义。通过这场论战()。
InrecentyearscriticismshavebeenvoicedconcerningsexistbiasintheEnglishlanguage.Ithasbeenarguedthatsomeofthe
最新回复
(
0
)