首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为n阶矩阵,则下列结论正确的是( ).
设A,B为n阶矩阵,则下列结论正确的是( ).
admin
2018-04-15
63
问题
设A,B为n阶矩阵,则下列结论正确的是( ).
选项
A、若A,B可逆,则A+B可逆
B、若A,B可逆,则AB可逆
C、若A+B可逆,则A—B可逆
D、若A+B可逆,则A,B都可逆
答案
B
解析
若A,B可逆,则|A|≠0,I |B|≠0,又|AB|=|A||B|,所以|AB|≠0,于是AB可逆,选(B).
转载请注明原文地址:https://kaotiyun.com/show/iSX4777K
0
考研数学三
相关试题推荐
已知二次型厂(x1,x2,x3)=xTAx的矩阵A=(aij)满足a11+a22+a33=-6,AB=C,用正交变换将二次型化为标准形,并写出所用的正交变换和所得标准形;
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,b)内存在与(Ⅱ)中ξ相异的点η,使fˊ(η(b2-a2)=.
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且fˊ(x)>0.若极限存在,证明:在(a,6)内存在一点ξ,使
设A是72阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
下列矩阵中,正定矩阵是()
已知η是非齐次线性方程组Ax=b的一个特解,ξ1,ξ2,…,ξn-r,是对应齐次方程组Ax=0的基础解系,证明:方程组Ax=b的任一个解均可由η,η+ξ1,η+ξ2,η+ξn-r线性表出.
设A是3阶矩阵,有特征值λ1=1,λ2=一1,λ3=2.A*是A的伴随矩阵,E是3阶单位矩阵,则=___________.
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i2(i=1,2,…,n).证明:A相似于B.
设f(x)在区间(0,1)内可导,且导函数f’(x)有界,证明:级数绝对收敛.
设线性齐次方程组(2E—A)x=0有通解x=kξ1=k(-1,1,1)T,其中k是任意常数,A是二次型f(x1,x2,x3)=xTAx的对应矩阵,且r(A)=1.(Ⅰ)问η1=(1,1,0)T,η=(1,一1,0)T是否是方程组Ax=0的解向量,
随机试题
二进制10110转换为八进制数是________。
下列选项中属于慢性肾炎临床特点的是
A.伸舌时舌体歪向一侧B.舌体紧缩,不能伸长C.舌体震颤抖动,不能自主D.舌伸出口外,不即回缩或立即收回E.舌体软弱,无力伸缩,痿废不用吐弄舌的舌象特征是
A.等容收缩期B.快速射血期C.缓慢射血期D.等容舒张期E.快速充盈期心室容积快速增大是在
男,7岁。突发寒战,高热,右膝下方剧痛3天。查体T39.8℃,P86次/分,R25次/分,BP110/60mmHg。烦躁不安,右膝关节呈半屈曲状,拒动,右小腿近端皮温高,肿胀不明显,压痛阳性。早期确诊最可靠的是
当市话电缆不可避免与1kV~10kV电力线路合杆时,二者间净距不应小于(),与1kv电力线路合杆时,净距不应小于()。
人事行政是指国家人事管理机关对()所进行的管理。
2010年,某省广电实际总收入为145.83亿元,同比增长32.07%。其中,广告收入为67.08亿元,同比增长25.88%:有线网络收入为45.38亿元,同比增长26.35%;其他收入为33.37亿元,同比增长57.3%。2010年,该省广电收
与脂肪和蛋白质相比,糖氧化时需要的氧更少,因而是人体最经济的能源。( )
【B1】【B5】
最新回复
(
0
)