首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4阶矩阵,A=(α1,α2,α3,α4),若Aχ=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
设A为4阶矩阵,A=(α1,α2,α3,α4),若Aχ=0的基础解系为(1,2,-3,0)T,则下列说法中错误的是( )
admin
2020-01-15
66
问题
设A为4阶矩阵,A=(α
1
,α
2
,α
3
,α
4
),若Aχ=0的基础解系为(1,2,-3,0)
T
,则下列说法中错误的是( )
选项
A、α
1
,α
2
,α
3
线性相关。
B、α
4
可由α
1
,α
2
,α
3
线性表出。
C、α
1
,α
2
,α
4
线性无关。
D、α
1
可由α
2
,α
3
,α
4
线性表出。
答案
B
解析
Aχ=0的基础解系为(1,2,-3,0)
T
,可知r(A)=3且α
1
+2α
2
-3α
3
=0,则α
1
,
α
2
,α
3
,线性相关,所以A正确。
因为r(A)=3且α
1
,α
2
,α
3
线性相关,若α
4
可由α
1
,α
2
,α
3
线性表出,则
r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
)<3,
所以该选项错误,答案为B。
由于α
3
=
,可知α
1
能由α
1
,α
2
,α
4
线性表出,故
r(α
1
,α
2
,α
4
)=r(α
1
,α
2
,α
3
,α
4
)=3,
因此α
1
,α
2
,α
4
线性无关,所以C正确。
由于α
1
=-2α
2
+3α
3
,可知α
1
可由(α
2
,α
3
,α
4
线性表出,所以D正确。
转载请注明原文地址:https://kaotiyun.com/show/iWS4777K
0
考研数学一
相关试题推荐
设函数y=f(x)存在二阶导数,且f'(x)≠0.(Ⅰ)请用y=f(x)的反函数的一阶导数、二阶导数表示及;(Ⅱ)求满足微分方程(*)的x与y所表示的关系式的曲线,它经过点(1,0),且在此点处的切线斜率为1/2,在此曲线上任意点处的
=()
设A是3阶矩阵,ξ1=(1,2,-2)T,ξ2=(2,1,一1)T,ξ3=(1,1,t)T是非齐次线性方程组Ax=b的解向量,其中b=(1,3,-2)T,则()
设二次型f(x1,x2,…,xn)=xTAx,且|A|<0.(Ⅰ)证明存在n维列向量ξ0,使得ξ0TAξ0<0;(Ⅱ)设A=,是否存在ξ0,使得ξ0TAξ0<0.若存在ξ0,则求ξ0,若不存在,说明理由.
设A是n阶正定矩阵,X是n维列向量,E是n阶单位矩阵,记(Ⅰ)计算PW;(Ⅱ)写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
设A,B是n阶矩阵.(Ⅰ)A是什么矩阵时,若AB=A,必有B=E.A是什么矩阵时,有B≠E,使得AB=A;(Ⅱ)设A=,求所有的B,使得AB=A.
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT.证明A是负惯性指数为0;
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
设A是n阶可逆矩阵,B是把A的第2列的3倍加到第4列上得到的矩阵,则
随机试题
唯物辩证法的实质与核心是()
关于键盘上的CapsLock键,下列叙述中正确的是________。
患者男,70岁。有高血压病史10年。2小时前大便用力后突然出现头痛、喷射状呕吐、言语不清,跌倒在地,急诊就诊。接诊护士在配合医生体检时,不正确的做法是()
某区财政局为改善办公环境,拟在已有办公楼上再加盖一层,并将该工程委托给某公司实施。修建过程中,该区规划局以加盖楼层未经批准属违规建筑为由,责令区财政局在限期内自行拆除。在本行政法律关系中,居于行政主体地位的是:
静默是表示快乐的最好的方法,要是我能说出我心里有多快乐,那么我的快乐是有限的。这段话的主要观点是:
下边句子中属于领属性主谓谓语句的是_____。
关于宪法规范,下列说法正确的有()(2015年一综一第16题)
有以下程序#include<iostream.h>floatfun(intx,inty){return(x+y);}voidmain(){inta=2,b=5,c=
调制解调器(Modem)的主要技术指标是数据传输速率,它的度量单位是()。
WhoisJudyLee?
最新回复
(
0
)