首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
向量组α1,α2,…,αm线性无关的充分必要条件是( ).
向量组α1,α2,…,αm线性无关的充分必要条件是( ).
admin
2018-11-22
61
问题
向量组α
1
,α
2
,…,α
m
线性无关的充分必要条件是( ).
选项
A、α
1
,α
2
,…,α
m
中任意两个向量不成比例
B、α
1
,α
2
,…,α
m
是两两正交的非零向量组
C、设A=(α
1
,α
2
,…,α
m
),方程组AX=0只有零解
D、α
1
,α
2
,…,α
m
中向量的个数小于向量的维数
答案
C
解析
向量组α
1
,α
2
,…,α
m
线性无关,则α
1
,α
2
,…,α
m
中任意两个向量不成比例,反之不对,故(A)不对;若α
1
,α
2
,…,α
m
是两两正交的非零向量组,则α
1
,α
2
,…,α
m
一定线性无关,但α
1
,α
2
,…,α
m
线性无关不一定两两正交,(B)不对;α
1
,α
2
,…,α
m
中向量个数小于向量的维数不一定线性无关,(D)不对,选(C).
转载请注明原文地址:https://kaotiyun.com/show/ibM4777K
0
考研数学一
相关试题推荐
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x,y≤1}.
设幂级数().
设三阶矩阵A的特征值为λ1=一1,λ2=2,λ3=4,对应的特征向量为ξ1,ξ2,ξ3,令P=(一3ξ1,2ξ2,5ξ3),则P—1(A*+2E)P等于().
将函数f(x)=.
假设二维随机变量(X1,X2)的协方差矩阵为,其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为p,那么行列式|∑|=0的充分必要条件是()
设X和Y分别表示扔n次硬币出现正面和反面的次数,则X,Y的相关系数为().
设三阶实对称矩阵A的特征值为λ1=1,λ2=-1,λ3=0;对应λ1,λ2的特征向量依次为p1=(1,2,2)T,p2=(2,1,-2)T,求A。
(Ⅰ)设随机变量x服从参数为λ的指数分布,证明:对任意非负实数s及t,有P{x≥s+t|X≥s}=P{x≥t}。(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
设λ1,λ2是n阶方阵A的两个不同特征值,X1、X2分别为属于λ1、λ2的特征向量.证明:X1+X2不是A的特征向量.
设f’(1)=2,极限
随机试题
圆锥销的锥度为7:24。( )
患儿,6岁,肾病综合征,入院查体时患儿面部、腹壁及双下肢明显水肿。化验结果:胆固醇升高,血浆蛋白降低,尿蛋白(++++)。根据该患儿情况,护士制订的首选护理诊断是
交易/定价错误属于操作风险内部流程类的因素,它是指在交易过程中,()。
下列各项中,不属于纳税申报方式的是()。
甲公司是一家P2P公司,公司采取的风控措施主要包括:(1)加强对借款人的信用评估;(2)在手续费中按一定比例提取风险准备金;(3)坚持“小额分散”的原则,即借款的客户分散在不同的地域、行业、年龄和学历中,单个借款人最高借款额为15万。根据以上信息判断,甲公
旅游者在中国境内旅游期间丢失行李,一般是导游人员的责任。()
“人们创造自己的历史。”这一命题表明()。
以下关于期权价格波动说法正确的是()。[复旦大学2012研]
Whatdoestheprofessormainlydiscuss?
A、19yearsold.B、16yearsold.C、35yearsold.D、25yearsold.C推理题。玄奘19岁开始穿越沙漠,文章最后说他16年后回到中国,那时他已经35岁了。
最新回复
(
0
)