首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2018-04-15
36
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性 方程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX= 0的两个解为ξ
1
=(3,一1,一1,0,一1)
T
,ξ
2
=(2,0,1,一1,6)
T
故AX=0的通解为k
1
(3,一1,一1,0,一1)
T
+k
2
(2,0,1,一1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/ier4777K
0
考研数学一
相关试题推荐
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
设A是s×n矩阵,B是A的前m行构成的m×n矩阵,已知A的行向量组的秩为r.证明:r(B)≥r+m—s.
向量组,β1β2……βt可由向量组α1,α2……αs线性表出,设表出关系为若α1,α2……αs线性无关.证明:r(β1β2……βt)=r(C).
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
设A是m×n矩阵,B是n×m矩阵,Em+AB可逆.(1)验证:En+BA也可逆,且(En+BA)-1=En—B(Em+AB)-1A;(2)设其中,利用(1)证明:P可逆,并求P-1.
如果幂级数在x=-1收敛,在x=3发散,则其收敛半径为________。
若函数F(x,y,z)满足F"xx+F"yy+F"zz=0,证明其中Ω是光滑闭曲面S所围的区域,是F在曲面S上沿曲面S的外向法线的方向导数。
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
设f(x)具有连续的二阶导数,令求g’(x)并讨论其连续性.
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)