首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
admin
2018-04-15
61
问题
设A=(α
1
,α
2
,α
3
,α
4
,α
5
),其中α
1
,α
3
,α
5
线性无关,且α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
,求方程组AX=0的通解.
选项
答案
因为α
1
,α
3
,α
5
线性无关,又α
2
,α
4
可由α
1
,α
3
,α
5
线性表示,所以r(A)=3,齐次线性 方程组AX=0的基础解系含有两个线性无关的解向量. 由α
2
=3α
1
一α
3
一α
5
,α
4
=2α
1
+α
3
+6α
5
得方程组AX= 0的两个解为ξ
1
=(3,一1,一1,0,一1)
T
,ξ
2
=(2,0,1,一1,6)
T
故AX=0的通解为k
1
(3,一1,一1,0,一1)
T
+k
2
(2,0,1,一1,6)
T
(k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/ier4777K
0
考研数学一
相关试题推荐
向量组,β1β2……βt可由向量组α1,α2……αs线性表出,设表出关系为若α1,α2……αs线性无关.证明:r(β1β2……βt)=r(C).
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
设A是n阶可逆方阵(n≥2),A*是A的伴随阵,则(A*)*=()
设B是可逆阵,A和B同阶,且满足A2+AB+B2=0,证明:A和A+B都是可逆阵,并求A-1和(A+B)-1.
设f(x)在[0,1]上具有二阶导数,且满足条件|f(x)|≤a,|f"(z)|≤b,其中a,b都是非负常数,c是(0,1)内任一点,证明|f’(c)|≤2a+.
设函数y=y(x)由方程ex+y+cos(xy)=0确定,则=_________.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且P(X>σ)
已知总体X的概率密度(λ>0),X1,X2,X3,…,Xn是来自总体X的简单随机样本,Y=X2。(Ⅰ)求Y的数学期望E(Y);(Ⅱ)求λ的矩估计量和最大似然估计量。
设f(x)=,证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积.
设(X,Y)为二维连续型随机变量,则下列公式各项都有意义的条件下①f(x,y)=fX(x)fY(y);②fX(x)=∫-∞+∞fY(y)fX|Y(x|y)dx;④P{X<Y)=∫-∞+∞FX(y)fY(y)dy,其中FX(y)=∫-∞yfX(x)d
随机试题
患者女,左颈部发现肿物8个月,逐渐增大、数目增多为10个,其中1个于1个月前溃破,脓液呈米汤样,破口不易愈合。应首先选择的治疗是
女性,22岁,口服不详农药60ml后,呕吐,流涎,走路不稳,视物模糊,呼吸困难,口中有大蒜样气味。最重要的实验室检查是
在职职工李某以抵押贷款方式在甲房地产开发公司(以下简称甲公司)开发的S住宅小区预购了一套商品住房。2001年8月,李某与甲公司签订了购买该套商品住房的预售合同,预售合同中对房屋建筑面积仅约定”房屋建筑面积100m2,每平方米建筑面积的价格3000元”。20
【2013年第4题】题6~10:某35kV变电所,两回电缆进线,装有2台35/10kV变压器、两台35/0.4kV所用变,10kV馈出回路若干。请回答以下问题,并列出解答过程。已知变电所一路380V所用电回路是以气体放电灯为主的照明回路,拟采用1kV交
在雨期进行道路路堑开挖,正确的开挖措施有()。
下列各项中不属于行政责任范围的是()。
下列哪一项未列入学校体育的功能?()
Whatisthecommonopinionaboutageandwork?
TheValueofWritingWell[A]It’sthattimeofyearagain.No,not"theholidayseason".Imean,itisholidaytime,butfor
Whileit’seasyenoughtobrushoffafewsleeplessnightswithapotofcoffeeandtheoccasionaldesknap,youmaybedoingmo
最新回复
(
0
)