首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
admin
2015-06-30
74
问题
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f"(ξ)=
选项
答案
令φ(x)=(x-1)
2
f’(x),显然φ(x)在[0,1]上可导.由f(0)=f(1)=0,根据 罗尔定理,存在c∈(0,1),使得f’(c)=0,再由φ(c)=φ(1)=0,根据罗尔定理,存在 ξ∈(c,1)[*](0,1),使得φ’(ξ)=0,而φ’(x)=2(x-1)f’(x)+(x-1)
2
f"(x),所以 2(ξ-1)f’(ξ)+(ξ-1)
2
f"(ξ)=0,整理得f"(ξ)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/if34777K
0
考研数学二
相关试题推荐
设幂级数.(Ⅰ)求幂级数的收敛域与和函数s(x);(Ⅱ)将(x+2)s(x)展开成x-1的幂级数,并写出其收敛域.
x轴上方的星形线:与x轴所围区域的面积S=________.
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,4α,…,AAk-1α线性无关.
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1,α2,α3,α4,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是().
设A是n阶方阵,线性方程组AX=0有非零解,则线性非齐次方程组ATX=b对任意b=(b1,b2,…,bn)T().
设函数f(x)在x=a的某个邻域内连续,且f(a)为其极大值,则存在δ>0,当x∈(a-δ,a+δ)时,必有().
设线性方程组问方程组何时无解,有唯一解,有无穷多解,有无穷多解时求出其全部解。
设三元二次型f=xTAx的二次型矩阵A的特征值为λ1=λ2=1,λ3=-1,ξ3=(0,1,1)T为对应于λ3=-1的特征向量。若3维非零列向量α与ξ3正交,证明α是对应于λ1=λ2=1的特征向量。
设A,B是二阶矩阵,|A|<0,A2=E,且B满足B2=E,AB=-BA.证明存在二阶可逆矩阵P,使得P-1AP=且P-1BP=.
设φ(x)=∫sinxcos2xln(1+t2)dt,求φ’(x).
随机试题
原料经脱水干制后,其内部含有许多毛细血管,当与水接触时,由于浸润作用使水分渗入原料内部,原料因吸水而膨胀。()
下列关于血管紧张素Ⅱ生理作用的描述,错误的是
肝硬化合并上消化道出血最主要的原因是
房地产经纪行业管理的目的在于规范房地产经纪活动,并协调房地产经纪活动中所涉及的各类当事人,包括()之间的关系。
()属于潜在致癌物。
如图2,该建筑是为纪念战争胜利而建造的()。
下列关于自然常识的描述,正确的是:
①据调查,失读症在西方人中比较多见,而在中国人中极少发现②让患者先学习汉字,再将语言材料用英文和汉字分两边认读,丧失的英文阅读能力竟然也得到了部分恢复③失读症指人因大脑局部受到损伤而丧失文字阅读能力④根据汉字认知的特点,西方发明了一种奇特的失读症治疗
普通话有()个浊辅音。
下面不属于软件需求规格说明书内容的是()。
最新回复
(
0
)