首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的分布函数为 已知P{一1<X<1}=.则a=______,b=_______.
设随机变量X的分布函数为 已知P{一1<X<1}=.则a=______,b=_______.
admin
2018-11-20
17
问题
设随机变量X的分布函数为
已知P{一1<X<1}=
.则a=______,b=_______.
选项
答案
[*]
解析
由于F(x)在任何一点都是右连续的,于是有F(一1+0)=F(一1),即
一a+b=
①
又因P{X=1}=P{一1<X≤1}一P{一1<X<1}=F(1)一F(一1)一
于是有
F(1—0)=F(1)一P{X=1} =
即 a+b=
②
联立①与②解得
转载请注明原文地址:https://kaotiyun.com/show/ifW4777K
0
考研数学三
相关试题推荐
设X~U(0,2),Y=X2,求Y的概率密度函数.
设随机变量X的密度函数为f(x)=求X在内的概率;
向量组α1,αs线性无关的充要条件是().
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)一证明:当x≥0时,e一x≤f(x)≤1.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明:向量组α,Aα,…,Ak—1α是线性无关的。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
袋中有口个白球与6个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
随机试题
A、Ithasbecomewidespread.B、Itisnotnecessaryforlife.C、IthasbeenaroundsincetheGardenofEden.D、Therearebothgood
处方正文的审查主要有以下方面()
生产经营单位主要负责人在本单位发生重大生产安全事故时,( ),给予降职、撤职的处分,对逃匿的处15日以下拘留;构成犯罪的,依照刑法有关规定追究刑事责任。
风险加权资产不包括()。
针对时间序列的水平分析指标有()。
(2011年)某公司股票的当前市价为10元,有一种以该股票为标的资产的看跌期权.执行价格为8元,到期时间为三个月,期权价格为3.5元。下列关于该看跌期权的说法中,正确的是()。
浣花溪记钟惺出成都南门,左为万里桥。西折纤秀长曲,所见如连环、如块,如带,如规,如钩;色如鉴、如琅歼,如绿沉瓜,窈然深碧,潆回城下者,皆浣花溪委也。然必至草堂,而后浣花
(2010年福建.春.97)请选择你认为最为合理的一项,来填补所给数列的空缺项,使之符合原数列的排列规律:
A、 B、 C、 B图片中为三种交通工具,因此只要听清句中出现的交通方式状语bybus即可知选[B]。
Theproblemofchildrenviolencehasbeendiscussedthoroughlyinthewakeoflastweek’stragedyinArkansas.Somediscussions
最新回复
(
0
)