首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
admin
2021-11-09
48
问题
就k的不同取值情况,确定方程x
3
-3x+k=0根的个数.
选项
答案
令f(x)=x
3
-3x+k,[*] 由f’(x)=3x
2
-3=0,得驻点为x
1
=-1,x
2
=1.f’’(x)=6x,由f’’(-1)=-6, f’’(1)=6,得x
1
=-1,x
2
=1分别为f(x)的极大值点和极小值点,极大值和极小值分别为f(-1)=2+k,f(1)=k-2. (1)当k<-2时,方程只有一个根; (2)当k=-2时,方程有两个根,其中一个为x=-1,另一个位于(1,+∞)内; (3)当-2<k<2时,方程有三个根,分别位于(-∞,-1),(-1,1),(1,+∞)内; (4)当k=2时,方程有两个根,一个位于(-∞,-1)内,另一个为x=1; (5)当k>2时,方程只有一个根.
解析
转载请注明原文地址:https://kaotiyun.com/show/igy4777K
0
考研数学二
相关试题推荐
设z=f(χ,y)二阶连续可偏导,且=χ+1,f′χ(χ,0)=2χ,f(0,y)=sin2y,则f(χ,y)=_______.
设A为四阶非零矩阵,且r(A*)=1,则().
把二重积分f(χ,y)出dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设f(χ),g(χ)(a<χ<b)为大于零的可导函数,且f′(χ)g(χ)-f(χ)g′(χ)<0,则当a<χ<b时,有().
设函数f(u)在(0,+∞)内具有二阶导数,且满足等式证明:f"(u)+fˊ(u)/u=0;
设有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
函数f(x)=在[一π,π]上的第一类间断点是x=()
一个值不为零的n阶行列式,经过若干次矩阵的初等变换后,该行列式的值()
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求二维随机变量(X,Y)的概率分布.
随机试题
不是主动脉瓣关闭不全体征的是
某男,15岁。贫血伴尿黄6年,未诊治。其弟弟有类似表现。查体:巩膜轻度黄染,脾肋下2cm。检查:Hb70g/L,MCV70fl,MCHtC29%,网织红细胞0.09,尿胆红素(─),尿胆原强阳性。下列检查对诊断最有帮助的是()
不具有扩张冠状动脉的药物是
下列不能使用现金结算的是()。
商业银行在计量客户违约后的债项违约损失率时,应当包括()。
从本质上说,市场结构反映市场中()关系的概念。
某商场在开业前要选择经营商业的种类,现有甲、乙、丙、丁四类商品可供选择。由于对未来市场需求无法做到比较精确的预测,只能大致估计为:需求量较高、需求量中等、需求量较低三种情况。这三种情况的预计损益值如下表所示:根据以上资料,回答下列问题:财务部门的总
某商店售卖可乐、雪碧两种饮料,已知可乐的数量占所有饮料的4/9,商店再次进货20瓶可乐,则可乐的数量占所有饮料的9/19。问:原来商店中的饮料共有多少瓶?
两个半径不同的圆柱形玻璃杯内均盛有一定量的水,甲杯的水位比乙杯的高5厘米。甲杯底部沉没着一个石块,当石块被取出并放进乙杯沉没后,乙杯的水位上升了5厘米,并且比这时甲的水位还高10厘米,则可得知甲杯与乙杯底面积之比为:
考虑二元函数的下面4条性质:①f(χ,y)在点(χ0,y0)处连续;②f(χ,y)在点(χ0,y0)处的两个偏导数连续;③f(χ,y)在点(χ0,y0)处可微;④f(χ,y)在点(χ0,y0)处两个偏导数存在
最新回复
(
0
)