首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-l,2,0)T, 则 β能否由α1,α2,α3线性表示?为什么?
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (-1,1,0,2)T+k(1,-l,2,0)T, 则 β能否由α1,α2,α3线性表示?为什么?
admin
2019-08-27
110
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(-1,1,0,2)
T
+k(1,-l,2,0)
T
,
则
β能否由α
1
,α
2
,α
3
线性表示?为什么?
选项
答案
假设可以,即β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则(k
1
,k
2
,k
3
,0)
T
是Ax=β的解. 从而(k
1
,k
2
,k
3
,0)
T
一(-1,1,0,2)
T
=(k
1
+1,k
2
-1,k
3
,-2)k
T
就是Ax=0的解. 但是显然(k
1
+1,k
2
-1,k
3
,-2)
T
和(1,-1,2,0)
T
线性无关.所以β不可以由α
1
,α
2
,α
3
线性表示.
解析
利用反证法;
转载请注明原文地址:https://kaotiyun.com/show/z1A4777K
0
考研数学二
相关试题推荐
设微分方程xf”(x)-f’(x)=2x.(I)求上述微分方程的通解;(Ⅱ)求得的解在x=0处是否连续?若不是,能否对每一个解补充定义,使其在x=0处连续,并讨论补充定义后的f(x)在x=0处的f’(0)及f”(0)的存在性,要求写出推理过程.
=_______.
设向量组(I)α1,α2,α3,α4线性无关,则和(I)等价的向量组是()
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
(I)证明以柯西一施瓦茨(Cauchy-Schwarz)命名的下述不等式:设f(x)与g(x)在闭区间[a,b]上连续,则有[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx;(Ⅱ)证明下述不等式:设f(x)在闭区间[0,1]上
设f(x)=arcsinx,ξ为f(x)在闭区间[0,t]上拉格朗日中值定理的中值点,0<t<1,求极限
设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定eχy-χy=2,eχ=,求=_______.
设f(x)=nx(1-x)n(n为自然数),
设函数f(x)在[0,1]上可微,且满足f(1)=xf(x)dx(0<λ<1),证明:存在ξ∈(0,1),使得f’(ξ)=
设{an}与{bn}为两个数列,下列说法正确的是().
随机试题
安全管理必须坚持“五同时”的原则包括计划、布置、检查、总结与()。
组织行为理论中有关领导理论包括领导性格、领导行为和()理论。
糖皮质激素和抗生索合用治疗严重感染的目的是
受力体一点处的应力状态如图所示,该点的最大主应力σ1为()。
根据《环境影响评价技术导则一大气环境》(HJ/T2.2—93),采用示踪法测量大气扩散参数的试验要点规定,每次试验连续释放的速率应保持稳定,脉动量应小于±1.5%,连续释放的时间在气象条件稳定的前提下不宜小于()。
甲公司2010年至2012年有关资料如下:(1)2010年1月1日,甲公司与丁公司签订技术转让协议,自丁公司取得其拥有的一项专利权。协议约定,专利权的转让价款为3000万元,甲公司应于协议签订之日支付600万元,其余款项分四次自当年起每年12月3
简述贷款诈骗罪的法定行为方式。
Idon’tknowwhatitisaboutEnglishpubsthatIfindsodisappointing.【C1】______,pubsaresupposedtobetheEnglishman’s【C
Inafurther______oftheminingindustry,GoldSunagreedtoacquireDemisGoldfor$7.9billion.
A、TryingtogetMarktotalkabouthisproblem.B、HelpingMarkrelaxandbemorecomfortableinagroup.C、Leavingamessageto
最新回复
(
0
)