首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵,X是一个2阶矩阵。 (Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X (Ⅱ)矩阵方程是否有解,如果有解,求其解。
设矩阵,X是一个2阶矩阵。 (Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X (Ⅱ)矩阵方程是否有解,如果有解,求其解。
admin
2019-01-25
48
问题
设矩阵
,X是一个2阶矩阵。
(Ⅰ)求满足矩阵方程ABX-XAB=O的所有的X
(Ⅱ)矩阵方程
是否有解,如果有解,求其解。
选项
答案
(Ⅰ)设未知矩阵为[*],代入方程可得 [*] 则该矩阵方程等价于齐次线性方程组[*] 对该方程的系数矩阵实施初等行变换, [*] 其中自由变量为x
3
,x
4
,令
3
=0,x
4
=1和x
3
=1,x
4
=0,可得基础解系为 α
1
=(2,2,1,0)
T
,α
2
=(-1,0,0,1)
T
, 因此 (x
1
,x
2
,x
3
,x
4
)
T
=k
1
α
1
+k
2
α
2
=(2k
1
-k
2
,2k
1
,k
1
,k
2
)
T
, 则满足矩阵方程的矩阵X为[*],k
1
,k
2
为任意常数。 (Ⅱ)矩阵方程[*]可转化为非齐次线性方程组 [*] 未知数个数多于方程个数,因此必有解,对应齐次方程组的通解为 x
0
=k
1
α
1
+k
2
α
2
=(2k
1
-k
2
,2k
1
,k
1
,k
2
)
T
, 非齐次线性方程组的一个特解为β=(-2,-1,0,0)
T
。因此方程组的通解为 x
0
=k
1
α
1
+k
2
α
2
+β=(2k
1
-k
2
-2,2k
1
-1,k
1
,k
2
)
T
。 则满足矩阵方程的矩阵X为[*],k
1
,k
2
为任意常数。
解析
本题考查矩阵方程。该题第一问求解矩阵方程时可通过变形将其转化为求解齐次线性方程组的解,根据齐次线性方程组求通解的步骤求出通解即为X的四个元素。第二问等价于求非齐次线性方程组的解的存在性。
转载请注明原文地址:https://kaotiyun.com/show/ihP4777K
0
考研数学三
相关试题推荐
证明级数收敛,且其和数小于1.
求解微分方程—y=x2+y2.
求解微分方程.
已知关系式f’(一x)=x[f’(x)一1],试求函数f(x)的表达式.
设实矩阵A=(aij)n×n的秩为n一1,αi为A的第i个行向量(i=1,2,…,n).求一个非零向量x∈Rn,使x与α1,α2,…,αn均正交.
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn—r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn—r=ξn—r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ0η
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫abf(x)dx]2(b—a)∫abf2(x)dx.
设函数f(x)在区间[a,b]上连续,且f(x)>0,证明:∫abf(x)dx.∫ab≥(b—a)2.
设二阶线性微分方程y"+p(x)y’+q(x)y=f(x)有三个特解y1=ex,y2=ex+,y3=ex+e—x,则该方程为_________.
若级数发散,则()
随机试题
Youcandoitifyouwantto,butinmyopinionit’snotworththe______itinvolves.
下列哪一项对心瓣膜功能的叙述是错误的()
宫颈活检为鳞癌,正确的诊断是患者进行了放疗,下列哪项治疗目的是正确的
离子交换法适宜分离
下列选项中不属于无效合同的特征的是()
会计的基本职能是( )。
古巴比伦王国的文明表现在()。
在窗体上画两个单选按钮,名称分别为Option1和Option2,标题分别为“黑体”和“楷体”;一个复选框,名称为Check1,标题为“粗体”。要求程序运行时,“黑体”单选按钮和“粗体”复选框被选中,则能够实现上述要求的语句序列是()。
Readtheextractbelowfromtheannualreportofacompanywithmanufacturinginterestsaroundtheworld.Choosethebestwo
differ,experience,inform,little,patience,prefer,quality,rely,limit,tame,familiar,violateThoughbountyhuntin
最新回复
(
0
)